Modeling Markers of Disease Progression by a Hidden Markov Process: Application to Characterizing CD4 Cell Decline
Author
Abstract
Suggested Citation
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Niels Keiding, 1991. "Age‐Specific Incidence and Prevalence: A Statistical Perspective," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 154(3), pages 371-396, May.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Bo Henry Lindqvist, 2023. "Phase-type models for competing risks, with emphasis on identifiability issues," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 29(2), pages 318-341, April.
- Jiakun Jiang & Wei Yang & Erin M. Schnellinger & Stephen E. Kimmel & Wensheng Guo, 2023. "Dynamic logistic state space prediction model for clinical decision making," Biometrics, The International Biometric Society, vol. 79(1), pages 73-85, March.
- Marc Chadeau‐Hyam & Paul S. Clarke & Chantal Guihenneuc‐Jouyaux & Simon N. Cousens & Robert G. Will & Azra C. Ghani, 2010. "An application of hidden Markov models to the French variant Creutzfeldt–Jakob disease epidemic," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 59(5), pages 839-853, November.
- Spagnoli, Alessandra & Henderson, Robin & Boys, Richard J. & Houwing-Duistermaat, Jeanine J., 2011. "A hidden Markov model for informative dropout in longitudinal response data with crisis states," Statistics & Probability Letters, Elsevier, vol. 81(7), pages 730-738, July.
- R. A. Hubbard & L. Y. T. Inoue & J. R. Fann, 2008. "Modeling Nonhomogeneous Markov Processes via Time Transformation," Biometrics, The International Biometric Society, vol. 64(3), pages 843-850, September.
- Ting Wang & Jiancang Zhuang & Kazushige Obara & Hiroshi Tsuruoka, 2017. "Hidden Markov modelling of sparse time series from non-volcanic tremor observations," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 66(4), pages 691-715, August.
- Albrecher, Hansjörg & Bladt, Martin & Bladt, Mogens & Yslas, Jorge, 2022. "Mortality modeling and regression with matrix distributions," Insurance: Mathematics and Economics, Elsevier, vol. 107(C), pages 68-87.
- Zhou, Jie & Song, Xinyuan & Sun, Liuquan, 2020. "Continuous time hidden Markov model for longitudinal data," Journal of Multivariate Analysis, Elsevier, vol. 179(C).
- Chris Sherlock & Tatiana Xifara & Sandra Telfer & Mike Begon, 2013. "A coupled hidden Markov model for disease interactions," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 62(4), pages 609-627, August.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Limin X. Clegg & Mitchell H. Gail & Eric J. Feuer, 2002. "Estimating the Variance of Disease-Prevalence Estimates from Population-Based Registries," Biometrics, The International Biometric Society, vol. 58(3), pages 684-688, September.
- Marcia C Castro & Mathieu Maheu-Giroux & Christinah Chiyaka & Burton H Singer, 2016. "Malaria Incidence Rates from Time Series of 2-Wave Panel Surveys," PLOS Computational Biology, Public Library of Science, vol. 12(8), pages 1-26, August.
- Mitchell H. Gail & Larry Kessler & Douglas Midthune & Steven Scoppa, 1999. "Two Approaches for Estimating Disease Prevalence from Population-Based Registries of Incidence and Total Mortality," Biometrics, The International Biometric Society, vol. 55(4), pages 1137-1144, December.
- Sungwook Kim & Michael P. Fay & Michael A. Proschan, 2021. "Valid and approximately valid confidence intervals for current status data," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 83(3), pages 438-452, July.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:biomet:v:56:y:2000:i:3:p:733-741. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0006-341X .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.