IDEAS home Printed from https://ideas.repec.org/p/ngi/dpaper/12-07.html
   My bibliography  Save this paper

Financial Integration from a Time-Varying Cointegration Perspective

Author

Listed:
  • Xianguo Huang

    (National Graduate Institute for Policy Studies)

  • Roberto Leon-Gonzalez

    (National Graduate Institute for Policy Studies)

  • Somrasri Yupho

    (National Graduate Institute for Policy Studies)

Abstract

This paper applies a time-varying cointegration (TVC) model to study regional financial integration, measured by the drifting cointegration coefficient of the long-term interest rates between Singapore and Malaysia. Conditioned on long-run exchange rate equilibrium, the evolving relation can be used to test the hypothesis of uncovered interest parity (UIP) in the strong and weak forms, and examine how the integration changes over time on the basis of the long-term interest rates measure. In the case of Singapore and Malaysia, the findings show that financial integration first decreased after the 1997 Asian Financial Crisis and then enhanced gradually from late 2001 onward. The shocks to Singapore, characterized by a higher level and a leading effect, are positively correlated with the ones to Malaysia.

Suggested Citation

  • Xianguo Huang & Roberto Leon-Gonzalez & Somrasri Yupho, 2012. "Financial Integration from a Time-Varying Cointegration Perspective," GRIPS Discussion Papers 12-07, National Graduate Institute for Policy Studies.
  • Handle: RePEc:ngi:dpaper:12-07
    as

    Download full text from publisher

    File URL: https://grips.repo.nii.ac.jp/?action=repository_action_common_download&item_id=1094&item_no=1&attribute_id=20&file_no=1
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Koop, Gary & Leon-Gonzalez, Roberto & Strachan, Rodney W., 2011. "Bayesian inference in a time varying cointegration model," Journal of Econometrics, Elsevier, vol. 165(2), pages 210-220.
    2. Sims, Christopher A. & Waggoner, Daniel F. & Zha, Tao, 2008. "Methods for inference in large multiple-equation Markov-switching models," Journal of Econometrics, Elsevier, vol. 146(2), pages 255-274, October.
    3. Feldstein, Martin & Horioka, Charles, 1980. "Domestic Saving and International Capital Flows," Economic Journal, Royal Economic Society, vol. 90(358), pages 314-329, June.
    4. John Geweke & Gianni Amisano, 2011. "Hierarchical Markov normal mixture models with applications to financial asset returns," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 26(1), pages 1-29, January/F.
    5. Bierens, Herman J. & Martins, Luis F., 2010. "Time-Varying Cointegration," Econometric Theory, Cambridge University Press, vol. 26(5), pages 1453-1490, October.
    6. J. Durbin, 2002. "A simple and efficient simulation smoother for state space time series analysis," Biometrika, Biometrika Trust, vol. 89(3), pages 603-616, August.
    7. Geweke, John, 1996. "Bayesian reduced rank regression in econometrics," Journal of Econometrics, Elsevier, vol. 75(1), pages 121-146, November.
    8. Chib, Siddhartha, 1996. "Calculating posterior distributions and modal estimates in Markov mixture models," Journal of Econometrics, Elsevier, vol. 75(1), pages 79-97, November.
    9. Rossella Calvi, 2010. "Assessing financial integration: a comparison between Europe and East Asia," European Economy - Economic Papers 2008 - 2015 423, Directorate General Economic and Financial Affairs (DG ECFIN), European Commission.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Koop, Gary & Leon-Gonzalez, Roberto & Strachan, Rodney W., 2011. "Bayesian inference in a time varying cointegration model," Journal of Econometrics, Elsevier, vol. 165(2), pages 210-220.
    2. Jochmann Markus & Koop Gary, 2015. "Regime-switching cointegration," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 19(1), pages 35-48, February.
    3. Xiaojie Xu, 2015. "Cointegration among regional corn cash prices," Economics Bulletin, AccessEcon, vol. 35(4), pages 2581-2594.
    4. Hauzenberger Niko & Huber Florian & Pfarrhofer Michael & Zörner Thomas O., 2021. "Stochastic model specification in Markov switching vector error correction models," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 25(2), pages 1-17, April.
    5. Joshua C.C. Chan & Gary Koop & Roberto Leon-Gonzalez & Rodney W. Strachan, 2012. "Time Varying Dimension Models," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 30(3), pages 358-367, January.
    6. Peter McAdam & Kostas Mouratidis & Theodore Panagiotidis & Georgios Papapanagiotou, 2023. "European Trade & Growth Imbalances: An Analysis using a Sign-Restriction Bayesian-GVAR with Stochastic Volatility," Working Paper series 23-12, Rimini Centre for Economic Analysis.
    7. Rodney W. Strachan & Herman K. Van Dijk, 2013. "Evidence On Features Of A Dsge Business Cycle Model From Bayesian Model Averaging," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 54(1), pages 385-402, February.
    8. Chew Lian Chua & Sarantis Tsiaplias, 2014. "A Bayesian Approach to Modelling Bivariate Time-Varying Cointegration and Cointegrating Rank," Melbourne Institute Working Paper Series wp2014n27, Melbourne Institute of Applied Economic and Social Research, The University of Melbourne.
    9. Sylvia Kaufmann, 2016. "Hidden Markov models in time series, with applications in economics," Working Papers 16.06, Swiss National Bank, Study Center Gerzensee.
    10. Rughoo, Aarti & You, Kefei, 2016. "Asian financial integration: Global or regional? Evidence from money and bond markets," International Review of Financial Analysis, Elsevier, vol. 48(C), pages 419-434.
    11. Miranda-Agrippino, Silvia & Ricco, Giovanni, 2018. "Bayesian Vector Autoregressions," The Warwick Economics Research Paper Series (TWERPS) 1159, University of Warwick, Department of Economics.
    12. Jan Prüser, 2021. "Forecasting US inflation using Markov dimension switching," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 40(3), pages 481-499, April.
    13. Xiong, Yingge & Tobias, Justin L. & Mannering, Fred L., 2014. "The analysis of vehicle crash injury-severity data: A Markov switching approach with road-segment heterogeneity," Transportation Research Part B: Methodological, Elsevier, vol. 67(C), pages 109-128.
    14. Luis Uzeda, 2022. "State Correlation and Forecasting: A Bayesian Approach Using Unobserved Components Models," Advances in Econometrics, in: Essays in Honour of Fabio Canova, volume 44, pages 25-53, Emerald Group Publishing Limited.
    15. Kaufmann, Sylvia, 2015. "K-state switching models with time-varying transition distributions—Does loan growth signal stronger effects of variables on inflation?," Journal of Econometrics, Elsevier, vol. 187(1), pages 82-94.
    16. Gary M. Koop & Simon M. Potter, 2004. "Forecasting and Estimating Multiple Change-point Models with an Unknown Number of Change-points," Discussion Papers in Economics 04/31, Division of Economics, School of Business, University of Leicester.
    17. Neto, David, 2021. "Adaptive LASSO for selecting Fourier coefficients in a functional smooth time-varying cointegrating regression: An application to the Feldstein–Horioka puzzle," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 179(C), pages 253-264.
    18. Joshua C. C. Chan, 2017. "The Stochastic Volatility in Mean Model With Time-Varying Parameters: An Application to Inflation Modeling," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 35(1), pages 17-28, January.
    19. Guisinger, Amy Y. & Owyang, Michael T. & Soques, Daniel, 2024. "Industrial Connectedness and Business Cycle Comovements," Econometrics and Statistics, Elsevier, vol. 29(C), pages 132-149.
    20. Maddalena Cavicchioli, 2021. "OLS Estimation of Markov switching VAR models: asymptotics and application to energy use," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 105(3), pages 431-449, September.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ngi:dpaper:12-07. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: the person in charge (email available below). General contact details of provider: https://edirc.repec.org/data/gripsjp.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.