Graphical Diagnostics for Modeling Unstructured Covariance Matrices
Author
Abstract
Suggested Citation
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Dale Zimmerman & Vicente Núñez-Antón & Timothy Gregoire & Oliver Schabenberger & Jeffrey Hart & Michael Kenward & Geert Molenberghs & Geert Verbeke & Mohsen Pourahmadi & Philippe Vieu & Dela Zimmerman, 2001. "Parametric modelling of growth curve data: An overview," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 10(1), pages 1-73, June.
- M. Pourahmadi & M. J. Daniels, 2002. "Dynamic Conditionally Linear Mixed Models for Longitudinal Data," Biometrics, The International Biometric Society, vol. 58(1), pages 225-231, March.
- Michael G. Kenward, 1987. "A Method for Comparing Profiles of Repeated Measurements," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 36(3), pages 296-308, November.
- Lindsey, J. K., 1999. "Models for Repeated Measurements," OUP Catalogue, Oxford University Press, edition 2, number 9780198505594.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Guillermo Villa & Isabel Molina & Roland Fried, 2011. "Modeling attendance at Spanish professional football league," Journal of Applied Statistics, Taylor & Francis Journals, vol. 38(6), pages 1189-1206, April.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- W. J. Krzanowski, 1999. "Antedependence models in the analysis of multi-group high-dimensional data," Journal of Applied Statistics, Taylor & Francis Journals, vol. 26(1), pages 59-67.
- Sophie Donnet & Jean-Louis Foulley & Adeline Samson, 2010. "Bayesian Analysis of Growth Curves Using Mixed Models Defined by Stochastic Differential Equations," Biometrics, The International Biometric Society, vol. 66(3), pages 733-741, September.
- Ulf Böckenholt, 2003. "Analysing state dependences in emotional experiences by dynamic count data models," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 52(2), pages 213-226, May.
- Li, Erning & Pourahmadi, Mohsen, 2013. "An alternative REML estimation of covariance matrices in linear mixed models," Statistics & Probability Letters, Elsevier, vol. 83(4), pages 1071-1077.
- P. J. Lindsey & J. Kaufmann, 2004. "Analysis of a longitudinal ordinal response clinical trial using dynamic models," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 53(3), pages 523-537, August.
- Rauf Ahmad, M. & Werner, C. & Brunner, E., 2008. "Analysis of high-dimensional repeated measures designs: The one sample case," Computational Statistics & Data Analysis, Elsevier, vol. 53(2), pages 416-427, December.
- Merlo, Luca & Petrella, Lea & Salvati, Nicola & Tzavidis, Nikos, 2022. "Marginal M-quantile regression for multivariate dependent data," Computational Statistics & Data Analysis, Elsevier, vol. 173(C).
- Carter, Christopher K. & Wong, Frederick & Kohn, Robert, 2011. "Constructing priors based on model size for nondecomposable Gaussian graphical models: A simulation based approach," Journal of Multivariate Analysis, Elsevier, vol. 102(5), pages 871-883, May.
- Nadia Solaro & Pier Ferrari, 2007.
"Robustness of Parameter Estimation Procedures in Multilevel Models When Random Effects are MEP Distributed,"
Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 16(1), pages 51-67, June.
- Nadia Solaro & Pier Alda Ferrari, 2005. "Robustness of parameter estimation procedures in multilevel models when random effects are MEP distributed," UNIMI - Research Papers in Economics, Business, and Statistics unimi-1013, Universitá degli Studi di Milano.
- Devin S. Johnson & Jennifer A. Hoeting, 2003. "Autoregressive Models for Capture-Recapture Data: A Bayesian Approach," Biometrics, The International Biometric Society, vol. 59(2), pages 341-350, June.
- Daniels, Michael J., 2006. "Bayesian modeling of several covariance matrices and some results on propriety of the posterior for linear regression with correlated and/or heterogeneous errors," Journal of Multivariate Analysis, Elsevier, vol. 97(5), pages 1185-1207, May.
- Lee, Keunbaik & Yoo, Jae Keun, 2014. "Bayesian Cholesky factor models in random effects covariance matrix for generalized linear mixed models," Computational Statistics & Data Analysis, Elsevier, vol. 80(C), pages 111-116.
- Luca Merlo & Lea Petrella & Nikos Tzavidis, 2022. "Quantile mixed hidden Markov models for multivariate longitudinal data: An application to children's Strengths and Difficulties Questionnaire scores," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 71(2), pages 417-448, March.
- Karim, Md Aktar Ul & Bhagat, Supriya Ramdas & Bhowmick, Amiya Ranjan, 2022. "Empirical detection of parameter variation in growth curve models using interval specific estimators," Chaos, Solitons & Fractals, Elsevier, vol. 157(C).
- Congdon, Peter, 2007. "Mixtures of spatial and unstructured effects for spatially discontinuous health outcomes," Computational Statistics & Data Analysis, Elsevier, vol. 51(6), pages 3197-3212, March.
- Lee, Keunbaik & Lee, JungBok & Hagan, Joseph & Yoo, Jae Keun, 2012. "Modeling the random effects covariance matrix for generalized linear mixed models," Computational Statistics & Data Analysis, Elsevier, vol. 56(6), pages 1545-1551.
- Daniels, M.J. & Pourahmadi, M., 2009. "Modeling covariance matrices via partial autocorrelations," Journal of Multivariate Analysis, Elsevier, vol. 100(10), pages 2352-2363, November.
- Courgeau, Daniel, 2007. "Multilevel synthesis. From the group to the individual," MPRA Paper 43189, University Library of Munich, Germany.
- Lindsey, J.K. & Lindsey, P.J., 2006. "Multivariate distributions with correlation matrices for nonlinear repeated measurements," Computational Statistics & Data Analysis, Elsevier, vol. 50(3), pages 720-732, February.
- Huang, Chao & Farewell, Daniel & Pan, Jianxin, 2017. "A calibration method for non-positive definite covariance matrix in multivariate data analysis," Journal of Multivariate Analysis, Elsevier, vol. 157(C), pages 45-52.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:istatr:v:70:y:2002:i:3:p:395-417. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/isiiinl.html .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.