IDEAS home Printed from https://ideas.repec.org/a/bla/biomet/v79y2023i2p1042-1056.html
   My bibliography  Save this article

Posttreatment confounding in causal mediation studies: A cutting‐edge problem and a novel solution via sensitivity analysis

Author

Listed:
  • Guanglei Hong
  • Fan Yang
  • Xu Qin

Abstract

In causal mediation studies that decompose an average treatment effect into indirect and direct effects, examples of posttreatment confounding are abundant. In the presence of treatment‐by‐mediator interactions, past research has generally considered it infeasible to adjust for a posttreatment confounder of the mediator–outcome relationship due to incomplete information: for any given individual, a posttreatment confounder is observed under the actual treatment condition while missing under the counterfactual treatment condition. This paper proposes a new sensitivity analysis strategy for handling posttreatment confounding and incorporates it into weighting‐based causal mediation analysis. The key is to obtain the conditional distribution of the posttreatment confounder under the counterfactual treatment as a function of not only pretreatment covariates but also its counterpart under the actual treatment. The sensitivity analysis then generates a bound for the natural indirect effect and that for the natural direct effect over a plausible range of the conditional correlation between the posttreatment confounder under the actual and that under the counterfactual conditions. Implemented through either imputation or integration, the strategy is suitable for binary as well as continuous measures of posttreatment confounders. Simulation results demonstrate major strengths and potential limitations of this new solution. A reanalysis of the National Evaluation of Welfare‐to‐Work Strategies (NEWWS) Riverside data reveals that the initial analytic results are sensitive to omitted posttreatment confounding.

Suggested Citation

  • Guanglei Hong & Fan Yang & Xu Qin, 2023. "Posttreatment confounding in causal mediation studies: A cutting‐edge problem and a novel solution via sensitivity analysis," Biometrics, The International Biometric Society, vol. 79(2), pages 1042-1056, June.
  • Handle: RePEc:bla:biomet:v:79:y:2023:i:2:p:1042-1056
    DOI: 10.1111/biom.13705
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/biom.13705
    Download Restriction: no

    File URL: https://libkey.io/10.1111/biom.13705?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Xu Qin & Jonah Deutsch & Guanglei Hong, 2021. "Unpacking Complex Mediation Mechanisms And Their Heterogeneity Between Sites In A Job Corps Evaluation," Journal of Policy Analysis and Management, John Wiley & Sons, Ltd., vol. 40(1), pages 158-190, January.
    2. Martin Huber, 2014. "Identifying Causal Mechanisms (Primarily) Based On Inverse Probability Weighting," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 29(6), pages 920-943, September.
    3. R. M. Daniel & B. L. De Stavola & S. N. Cousens & S. Vansteelandt, 2015. "Causal mediation analysis with multiple mediators," Biometrics, The International Biometric Society, vol. 71(1), pages 1-14, March.
    4. Jeffrey M. Albert & Suchitra Nelson, 2011. "Generalized Causal Mediation Analysis," Biometrics, The International Biometric Society, vol. 67(3), pages 1028-1038, September.
    5. Imai, Kosuke & Yamamoto, Teppei, 2013. "Identification and Sensitivity Analysis for Multiple Causal Mechanisms: Revisiting Evidence from Framing Experiments," Political Analysis, Cambridge University Press, vol. 21(2), pages 141-171, April.
    6. Guanglei Hong & Jonah Deutsch & Heather D. Hill, 2015. "Ratio-of-Mediator-Probability Weighting for Causal Mediation Analysis in the Presence of Treatment-by-Mediator Interaction," Mathematica Policy Research Reports 328b045b48b14d9ea3f7d0fe9, Mathematica Policy Research.
    7. Ingram Olkin, 1981. "Range restrictions for product-moment correlation matrices," Psychometrika, Springer;The Psychometric Society, vol. 46(4), pages 469-472, December.
    8. Caleb H. Miles & Ilya Shpitser & Phyllis Kanki & Seema Meloni & Eric J. Tchetgen Tchetgen, 2017. "Quantifying an Adherence Path-Specific Effect of Antiretroviral Therapy in the Nigeria PEPFAR Program," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(520), pages 1443-1452, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chung, Ha-Joon & Hong, Guanglei, 2024. "Endogenous Confounding in Causal Decomposition Analysis," SocArXiv dtbrn, Center for Open Science.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xu Qin & Jonah Deutsch & Guanglei Hong, 2021. "Unpacking Complex Mediation Mechanisms And Their Heterogeneity Between Sites In A Job Corps Evaluation," Journal of Policy Analysis and Management, John Wiley & Sons, Ltd., vol. 40(1), pages 158-190, January.
    2. Martin Huber & Yu‐Chin Hsu & Ying‐Ying Lee & Layal Lettry, 2020. "Direct and indirect effects of continuous treatments based on generalized propensity score weighting," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 35(7), pages 814-840, November.
    3. Martin Huber & Mark Schelker & Anthony Strittmatter, 2022. "Direct and Indirect Effects based on Changes-in-Changes," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 40(1), pages 432-443, January.
    4. Helmut Farbmacher & Martin Huber & Lukáš Lafférs & Henrika Langen & Martin Spindler, 2022. "Causal mediation analysis with double machine learning [Mediation analysis via potential outcomes models]," The Econometrics Journal, Royal Economic Society, vol. 25(2), pages 277-300.
    5. Tyler J. VanderWeele & Eric J. Tchetgen Tchetgen, 2017. "Mediation analysis with time varying exposures and mediators," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 79(3), pages 917-938, June.
    6. Xu Qin & Guanglei Hong, 2017. "A Weighting Method for Assessing Between-Site Heterogeneity in Causal Mediation Mechanism," Journal of Educational and Behavioral Statistics, , vol. 42(3), pages 308-340, June.
    7. Hsu Yu-Chin & Huber Martin & Lai Tsung-Chih, 2019. "Nonparametric estimation of natural direct and indirect effects based on inverse probability weighting," Journal of Econometric Methods, De Gruyter, vol. 8(1), pages 1-20, January.
    8. Xiang Zhou, 2022. "Semiparametric estimation for causal mediation analysis with multiple causally ordered mediators," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 84(3), pages 794-821, July.
    9. Steen, Johan & Loeys, Tom & Moerkerke, Beatrijs & Vansteelandt, Stijn, 2017. "medflex: An R Package for Flexible Mediation Analysis using Natural Effect Models," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 76(i11).
    10. Martin Huber & Michael Lechner & Giovanni Mellace, 2017. "Why Do Tougher Caseworkers Increase Employment? The Role of Program Assignment as a Causal Mechanism," The Review of Economics and Statistics, MIT Press, vol. 99(1), pages 180-183, March.
    11. Markus Frölich & Martin Huber, 2017. "Direct and indirect treatment effects–causal chains and mediation analysis with instrumental variables," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 79(5), pages 1645-1666, November.
    12. Martin Huber & Michael Lechner & Giovanni Mellace, 2016. "The Finite Sample Performance of Estimators for Mediation Analysis Under Sequential Conditional Independence," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 34(1), pages 139-160, January.
    13. Zhao, Yi & Luo, Xi, 2023. "Multilevel mediation analysis with structured unmeasured mediator-outcome confounding," Computational Statistics & Data Analysis, Elsevier, vol. 179(C).
    14. Soojin Park & Peter M. Steiner & David Kaplan, 2018. "Identification and Sensitivity Analysis for Average Causal Mediation Effects with Time-Varying Treatments and Mediators: Investigating the Underlying Mechanisms of Kindergarten Retention Policy," Psychometrika, Springer;The Psychometric Society, vol. 83(2), pages 298-320, June.
    15. Martin Huber, 2015. "Causal Pitfalls in the Decomposition of Wage Gaps," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 33(2), pages 179-191, April.
    16. Cai, Xizhen & Zhu, Yeying & Huang, Yuan & Ghosh, Debashis, 2022. "High-dimensional causal mediation analysis based on partial linear structural equation models," Computational Statistics & Data Analysis, Elsevier, vol. 174(C).
    17. Ryan M. Andrews & Ilya Shpitser & Oscar Lopez & William T. Longstreth & Paulo H. M. Chaves & Lewis Kuller & Michelle C. Carlson, 2020. "Examining the causal mediating role of brain pathology on the relationship between diabetes and cognitive impairment: the Cardiovascular Health Study," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 183(4), pages 1705-1726, October.
    18. Haiyan Liu & Ick Hoon Jin & Zhiyong Zhang & Ying Yuan, 2021. "Social Network Mediation Analysis: A Latent Space Approach," Psychometrika, Springer;The Psychometric Society, vol. 86(1), pages 272-298, March.
    19. Guanglei Hong & Xu Qin & Fan Yang, 2018. "Weighting-Based Sensitivity Analysis in Causal Mediation Studies," Journal of Educational and Behavioral Statistics, , vol. 43(1), pages 32-56, February.
    20. R. M. Daniel & B. L. De Stavola & S. N. Cousens & S. Vansteelandt, 2015. "Causal mediation analysis with multiple mediators," Biometrics, The International Biometric Society, vol. 71(1), pages 1-14, March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:biomet:v:79:y:2023:i:2:p:1042-1056. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0006-341X .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.