IDEAS home Printed from https://ideas.repec.org/a/bpj/ijbist/v7y2011i1n16.html
   My bibliography  Save this article

A Complete Graphical Criterion for the Adjustment Formula in Mediation Analysis

Author

Listed:
  • Shpitser Ilya
  • VanderWeele Tyler J

Abstract

Various assumptions have been used in the literature to identify natural direct and indirect effects in mediation analysis. These effects are of interest because they allow for effect decomposition of a total effect into a direct and indirect effect even in the presence of interactions or non-linear models. In this paper, we consider the relation and interpretation of various identification assumptions in terms of causal diagrams interpreted as a set of non-parametric structural equations. We show that for such causal diagrams, two sets of assumptions for identification that have been described in the literature are in fact equivalent in the sense that if either set of assumptions holds for all models inducing a particular causal diagram, then the other set of assumptions will also hold for all models inducing that diagram. We moreover build on prior work concerning a complete graphical identification criterion for covariate adjustment for total effects to provide a complete graphical criterion for using covariate adjustment to identify natural direct and indirect effects. Finally, we show that this criterion is equivalent to the two sets of independence assumptions used previously for mediation analysis.

Suggested Citation

  • Shpitser Ilya & VanderWeele Tyler J, 2011. "A Complete Graphical Criterion for the Adjustment Formula in Mediation Analysis," The International Journal of Biostatistics, De Gruyter, vol. 7(1), pages 1-24, March.
  • Handle: RePEc:bpj:ijbist:v:7:y:2011:i:1:n:16
    DOI: 10.2202/1557-4679.1297
    as

    Download full text from publisher

    File URL: https://doi.org/10.2202/1557-4679.1297
    Download Restriction: For access to full text, subscription to the journal or payment for the individual article is required.

    File URL: https://libkey.io/10.2202/1557-4679.1297?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. van der Laan Mark J. & Petersen Maya L, 2008. "Direct Effect Models," The International Journal of Biostatistics, De Gruyter, vol. 4(1), pages 1-29, October.
    2. Stephen J. Chanock & David J. Hunter, 2008. "When the smoke clears ..," Nature, Nature, vol. 452(7187), pages 537-538, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gambelli, Danilo & Alberti, Francesca & Solfanelli, Francesco & Vairo, Daniela & Zanoli, Raffaele, 2017. "Third generation algae biofuels in Italy by 2030: A scenario analysis using Bayesian networks," Energy Policy, Elsevier, vol. 103(C), pages 165-178.
    2. Tyler J. VanderWeele & Eric J. Tchetgen Tchetgen, 2017. "Mediation analysis with time varying exposures and mediators," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 79(3), pages 917-938, June.
    3. Christoph Dworschak, 2024. "Bias mitigation in empirical peace and conflict studies: A short primer on posttreatment variables," Journal of Peace Research, Peace Research Institute Oslo, vol. 61(3), pages 462-476, May.
    4. Rahul Singh & Liyuan Xu & Arthur Gretton, 2021. "Sequential Kernel Embedding for Mediated and Time-Varying Dose Response Curves," Papers 2111.03950, arXiv.org, revised Jul 2023.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shuxi Zeng & Elizabeth C. Lange & Elizabeth A. Archie & Fernando A. Campos & Susan C. Alberts & Fan Li, 2023. "A Causal Mediation Model for Longitudinal Mediators and Survival Outcomes with an Application to Animal Behavior," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 28(2), pages 197-218, June.
    2. Zheng Wenjing & van der Laan Mark J., 2012. "Targeted Maximum Likelihood Estimation of Natural Direct Effects," The International Journal of Biostatistics, De Gruyter, vol. 8(1), pages 1-40, January.
    3. Guanglei Hong & Jonah Deutsch & Heather D. Hill, 2013. "Ratio-of-Mediator-Probability Weighting for Causal Mediation Analysis in the Presence of Treatment-by-Mediator Interaction," Working Papers 2013-009, Human Capital and Economic Opportunity Working Group.
    4. Stijn Vansteelandt & Tyler J. VanderWeele, 2012. "Natural Direct and Indirect Effects on the Exposed: Effect Decomposition under Weaker Assumptions," Biometrics, The International Biometric Society, vol. 68(4), pages 1019-1027, December.
    5. Kara E. Rudolph & Iván Díaz, 2022. "When the ends do not justify the means: Learning who is predicted to have harmful indirect effects," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 185(S2), pages 573-589, December.
    6. Iván Díaz & Nima S. Hejazi, 2020. "Causal mediation analysis for stochastic interventions," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 82(3), pages 661-683, July.
    7. Yizhen Xu & Numair Sani & AmirEmad Ghassami & Ilya Shpitser, 2021. "Multiply Robust Causal Mediation Analysis with Continuous Treatments," Papers 2105.09254, arXiv.org, revised Oct 2024.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bpj:ijbist:v:7:y:2011:i:1:n:16. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Peter Golla (email available below). General contact details of provider: https://www.degruyter.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.