IDEAS home Printed from https://ideas.repec.org/a/spr/compst/v18y2003i2d10.1007_s001800300144.html
   My bibliography  Save this article

Bayesian Geoadditive Seemingly Unrelated Regression

Author

Listed:
  • Stefan Lang

    (University of Munich)

  • Samson B. Adebayo

    (University of Munich)

  • Ludwig Fahrmeir

    (University of Munich)

  • Winfried J. Steiner

    (University of Regensburg)

Abstract

Summary Parametric seemingly unrelated regression (SUR) models are a common tool for multivariate regression analysis when error variables are reasonably correlated, so that separate univariate analysis may result in inefficient estimates of covariate effects. A weakness of parametric models is that they require strong assumptions on the functional form of possibly nonlinear effects of metrical covariates. In this paper, we develop a Bayesian semiparametric SUR model, where the usual linear predictors are replaced by more flexible additive predictors allowing for simultaneous nonparametric estimation of such covariate effects and of spatial effects. The approach is based on appropriate smoothness priors which allow different forms and degrees of smoothness in a general framework. Inference is fully Bayesian and uses recent Markov chain Monte Carlo techniques.

Suggested Citation

  • Stefan Lang & Samson B. Adebayo & Ludwig Fahrmeir & Winfried J. Steiner, 2003. "Bayesian Geoadditive Seemingly Unrelated Regression," Computational Statistics, Springer, vol. 18(2), pages 263-292, July.
  • Handle: RePEc:spr:compst:v:18:y:2003:i:2:d:10.1007_s001800300144
    DOI: 10.1007/s001800300144
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s001800300144
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s001800300144?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gamerman, Dani & Moreira, Ajax R. B. & Rue, Havard, 2003. "Space-varying regression models: specifications and simulation," Computational Statistics & Data Analysis, Elsevier, vol. 42(3), pages 513-533, March.
    2. Håvard Rue, 2001. "Fast sampling of Gaussian Markov random fields," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 63(2), pages 325-338.
    3. Ludwig Fahrmeir & Stefan Lang, 2001. "Bayesian inference for generalized additive mixed models based on Markov random field priors," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 50(2), pages 201-220.
    4. Ludwig Fahrmeir & Stefan Lang, 2001. "Bayesian Semiparametric Regression Analysis of Multicategorical Time-Space Data," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 53(1), pages 11-30, March.
    5. Julian Besag & Jeremy York & Annie Mollié, 1991. "Bayesian image restoration, with two applications in spatial statistics," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 43(1), pages 1-20, March.
    6. Smith, Michael & Kohn, Robert, 2000. "Nonparametric seemingly unrelated regression," Journal of Econometrics, Elsevier, vol. 98(2), pages 257-281, October.
    7. Hruschka, Harald, 2002. "Market share analysis using semi-parametric attraction models," European Journal of Operational Research, Elsevier, vol. 138(1), pages 212-225, April.
    8. Rainer Winkelmann, 2000. "Seemingly Unrelated Negative Binomial Regression," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 62(4), pages 553-560, September.
    9. Alan L. Montgomery, 1997. "Creating Micro-Marketing Pricing Strategies Using Supermarket Scanner Data," Marketing Science, INFORMS, vol. 16(4), pages 315-337.
    10. Leonhard Knorr‐Held & Håvard Rue, 2002. "On Block Updating in Markov Random Field Models for Disease Mapping," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 29(4), pages 597-614, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Anett Weber & Winfried J. Steiner & Stefan Lang, 2017. "A comparison of semiparametric and heterogeneous store sales models for optimal category pricing," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 39(2), pages 403-445, March.
    2. Nadja Klein & Torsten Hothorn & Luisa Barbanti & Thomas Kneib, 2022. "Multivariate conditional transformation models," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 49(1), pages 116-142, March.
    3. Wolfgang A. Brunauer & Sebastian Keiler & Stefan Lang, 2010. "Cost Drivers of Operation Charges and Variation over Time: An Analysis Based on Semiparametric SUR Models," Working Papers 2010-10, Faculty of Economics and Statistics, Universität Innsbruck.
    4. Bin Zhou & Qinfeng Xu & Jinhong You, 2011. "Efficient estimation for error component seemingly unrelated nonparametric regression models," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 73(1), pages 121-138, January.
    5. Hruschka, Harald, 2006. "Relevance of functional flexibility for heterogeneous sales response models: A comparison of parametric and semi-nonparametric models," European Journal of Operational Research, Elsevier, vol. 174(2), pages 1009-1020, October.
    6. Gamerman, Dani & Moreira, Ajax R. B., 2004. "Multivariate spatial regression models," Journal of Multivariate Analysis, Elsevier, vol. 91(2), pages 262-281, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Håvard Rue & Ingelin Steinsland & Sveinung Erland, 2004. "Approximating hidden Gaussian Markov random fields," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 66(4), pages 877-892, November.
    2. Gamerman, Dani & Moreira, Ajax R. B., 2004. "Multivariate spatial regression models," Journal of Multivariate Analysis, Elsevier, vol. 91(2), pages 262-281, November.
    3. Volker Schmid & Leonhard Held, 2004. "Bayesian Extrapolation of Space–Time Trends in Cancer Registry Data," Biometrics, The International Biometric Society, vol. 60(4), pages 1034-1042, December.
    4. Riccardo Borgoni & Francesco Billari, 2003. "Bayesian spatial analysis of demographic survey data," Demographic Research, Max Planck Institute for Demographic Research, Rostock, Germany, vol. 8(3), pages 61-92.
    5. Vinicius Mayrink & Dani Gamerman, 2009. "On computational aspects of Bayesian spatial models: influence of the neighboring structure in the efficiency of MCMC algorithms," Computational Statistics, Springer, vol. 24(4), pages 641-669, December.
    6. Riccardo Borgoni & Francesco C. Billari, 2002. "Bayesian spatial analysis of demographic survey data: an application to contraceptive use at first sexual intercourse," MPIDR Working Papers WP-2002-048, Max Planck Institute for Demographic Research, Rostock, Germany.
    7. Håvard Rue & Sara Martino & Nicolas Chopin, 2009. "Approximate Bayesian inference for latent Gaussian models by using integrated nested Laplace approximations," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 71(2), pages 319-392, April.
    8. Leonhard Knorr-Held & Günter Raßer & Nikolaus Becker, 2002. "Disease Mapping of Stage-Specific Cancer Incidence Data," Biometrics, The International Biometric Society, vol. 58(3), pages 492-501, September.
    9. Brezger, Andreas & Lang, Stefan, 2006. "Generalized structured additive regression based on Bayesian P-splines," Computational Statistics & Data Analysis, Elsevier, vol. 50(4), pages 967-991, February.
    10. Steinsland, Ingelin, 2007. "Parallel exact sampling and evaluation of Gaussian Markov random fields," Computational Statistics & Data Analysis, Elsevier, vol. 51(6), pages 2969-2981, March.
    11. Ferreira, Marco A.R. & De Oliveira, Victor, 2007. "Bayesian reference analysis for Gaussian Markov random fields," Journal of Multivariate Analysis, Elsevier, vol. 98(4), pages 789-812, April.
    12. Klein, Nadja & Herwartz, Helmut & Kneib, Thomas, 2020. "Modelling regional patterns of inefficiency: A Bayesian approach to geoadditive panel stochastic frontier analysis with an application to cereal production in England and Wales," Journal of Econometrics, Elsevier, vol. 214(2), pages 513-539.
    13. Samson B. Adebayo, 2004. "Bayesian geoadditive modelling of breastfeeding initiation in Nigeria," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 19(2), pages 267-281.
    14. Tamvada, Jagannadha Pawan, 2010. "The Dynamics of Self-employment in a Developing Country: Evidence from India," MPRA Paper 20042, University Library of Munich, Germany.
    15. Gamerman, Dani & Moreira, Ajax R. B. & Rue, Havard, 2003. "Space-varying regression models: specifications and simulation," Computational Statistics & Data Analysis, Elsevier, vol. 42(3), pages 513-533, March.
    16. Peter Congdon, 2010. "A Multilevel Model for Comorbid Outcomes: Obesity and Diabetes in the US," IJERPH, MDPI, vol. 7(2), pages 1-20, January.
    17. Lang, Stefan & Sunder, Marco, 2003. "Non-parametric regression with BayesX: a flexible estimation of trends in human physical stature in 19th century America," Economics & Human Biology, Elsevier, vol. 1(1), pages 77-89, January.
    18. Wilkinson, Darren J & KH Yeung, Stephen, 2004. "A sparse matrix approach to Bayesian computation in large linear models," Computational Statistics & Data Analysis, Elsevier, vol. 44(3), pages 493-516, January.
    19. Denuit, Michel & Lang, Stefan, 2004. "Non-life rate-making with Bayesian GAMs," Insurance: Mathematics and Economics, Elsevier, vol. 35(3), pages 627-647, December.
    20. Schmidt, Paul & Mühlau, Mark & Schmid, Volker, 2017. "Fitting large-scale structured additive regression models using Krylov subspace methods," Computational Statistics & Data Analysis, Elsevier, vol. 105(C), pages 59-75.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:compst:v:18:y:2003:i:2:d:10.1007_s001800300144. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.