IDEAS home Printed from https://ideas.repec.org/a/bla/istatr/v90y2022i1p165-183.html
   My bibliography  Save this article

Assessing Bayesian Semi‐Parametric Log‐Linear Models: An Application to Disclosure Risk Estimation

Author

Listed:
  • Cinzia Carota
  • Maurizio Filippone
  • Silvia Polettini

Abstract

We propose a method for identifying models with good predictive performance in the family of Bayesian log‐linear mixed models with Dirichlet process random effects for count data. Their wide applicability makes the assessment of model performance crucial in many fields, including disclosure risk estimation, which is the focus of the present work. Rather than assessing models on the whole contingency table, we target the specific objective of the analysis and propose a two‐stage model selection procedure aimed at limiting a form of bias arising in the process of model selection. Our proposal combines two different criteria: at the first stage, a path in the model search space is identified through a strongly penalized log‐likelihood; at the second, a small number of semi‐parametric models is evaluated through a context‐dependent score‐based information criterion. Tested on a variety of contingency tables, our method proves to be able to identify models with good predictive performance in a few steps, even in the presence of large tables with many sampling and structural zeros. We carefully discuss the proposed method in the context of the literature on model assessment and contextualize the illustrative application in the recent debate on statistical disclosure limitation. Finally, we provide examples of further applications in different research areas.

Suggested Citation

  • Cinzia Carota & Maurizio Filippone & Silvia Polettini, 2022. "Assessing Bayesian Semi‐Parametric Log‐Linear Models: An Application to Disclosure Risk Estimation," International Statistical Review, International Statistical Institute, vol. 90(1), pages 165-183, April.
  • Handle: RePEc:bla:istatr:v:90:y:2022:i:1:p:165-183
    DOI: 10.1111/insr.12471
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/insr.12471
    Download Restriction: no

    File URL: https://libkey.io/10.1111/insr.12471?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Skinner, Chris & Shlomo, Natalie, 2008. "Assessing Identification Risk in Survey Microdata Using Log-Linear Models," Journal of the American Statistical Association, American Statistical Association, vol. 103(483), pages 989-1001.
    2. Mark Girolami & Ben Calderhead, 2011. "Riemann manifold Langevin and Hamiltonian Monte Carlo methods," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 73(2), pages 123-214, March.
    3. Steven Ruggles & Catherine Fitch & Diana Magnuson & Jonathan Schroeder, 2019. "Differential Privacy and Census Data: Implications for Social and Economic Research," AEA Papers and Proceedings, American Economic Association, vol. 109, pages 403-408, May.
    4. Skinner, Chris J. & Shlomo, Natalie, 2008. "Assessing identification risk in survey microdata using log-linear models," LSE Research Online Documents on Economics 39112, London School of Economics and Political Science, LSE Library.
    5. Chris Chatfield, 1995. "Model Uncertainty, Data Mining and Statistical Inference," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 158(3), pages 419-444, May.
    6. Jonathan J. Forster & Emily L. Webb, 2007. "Bayesian disclosure risk assessment: predicting small frequencies in contingency tables," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 56(5), pages 551-570, November.
    7. Daniel Manrique-Vallier & Jerome P. Reiter, 2012. "Estimating Identification Disclosure Risk Using Mixed Membership Models," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 107(500), pages 1385-1394, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shlomo, Natalie & Skinner, Chris, 2022. "Measuring risk of re-identification in microdata: state-of-the art and new directions," LSE Research Online Documents on Economics 117168, London School of Economics and Political Science, LSE Library.
    2. Favaro, Stefano & Panero, Francesca & Rigon, Tommaso, 2021. "Bayesian nonparametric disclosure risk assessment," LSE Research Online Documents on Economics 117305, London School of Economics and Political Science, LSE Library.
    3. Natalie Shlomo & Chris Skinner, 2022. "Measuring risk of re‐identification in microdata: State‐of‐the art and new directions," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 185(4), pages 1644-1662, October.
    4. James Jackson & Robin Mitra & Brian Francis & Iain Dove, 2022. "Using saturated count models for user‐friendly synthesis of large confidential administrative databases," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 185(4), pages 1613-1643, October.
    5. Christine M. O'Keefe & James O. Chipperfield, 2013. "A Summary of Attack Methods and Confidentiality Protection Measures for Fully Automated Remote Analysis Systems," International Statistical Review, International Statistical Institute, vol. 81(3), pages 426-455, December.
    6. Prada, Sergio I & Gonzalez, Claudia & Borton, Joshua & Fernandes-Huessy, Johannes & Holden, Craig & Hair, Elizabeth & Mulcahy, Tim, 2011. "Avoiding disclosure of individually identifiable health information: a literature review," MPRA Paper 35463, University Library of Munich, Germany.
    7. Drechsler, Jörg & Reiter, Jerome P., 2011. "An empirical evaluation of easily implemented, nonparametric methods for generating synthetic datasets," Computational Statistics & Data Analysis, Elsevier, vol. 55(12), pages 3232-3243, December.
    8. Eurosystem Household Finance and Consumption Network, 2013. "The Eurosystem Household Finance and Consumption Survey - Methodological report," Statistics Paper Series 1, European Central Bank.
    9. Li‐Chun Zhang & Gustav Haraldsen, 2022. "Secure big data collection and processing: Framework, means and opportunities," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 185(4), pages 1541-1559, October.
    10. Sergio I. Prada & Claudia González-Martínez & Joshua Borton & Johannes Fernandes-Huessy & Craig Holden & Elizabeth Hair & and Tim Mulcahy, 2011. "Avoiding Disclosure of Individually Identifiable Health Information," SAGE Open, , vol. 1(3), pages 21582440114, October.
    11. Krenzke Tom & Gentleman Jane F. & Li Jianzhu & Moriarity Chris, 2013. "Addressing Disclosure Concerns and Analysis Demands in a Real-Time Online Analytic System," Journal of Official Statistics, Sciendo, vol. 29(1), pages 99-124, March.
    12. Iwona Bąk & Katarzyna Cheba, 2022. "Green Transformation: Applying Statistical Data Analysis to a Systematic Literature Review," Energies, MDPI, vol. 16(1), pages 1-22, December.
    13. Chipperfield James O., 2014. "Disclosure-Protected Inference with Linked Microdata Using a Remote Analysis Server," Journal of Official Statistics, Sciendo, vol. 30(1), pages 123-146, March.
    14. Chou, Ping & Chuang, Howard Hao-Chun & Chou, Yen-Chun & Liang, Ting-Peng, 2022. "Predictive analytics for customer repurchase: Interdisciplinary integration of buy till you die modeling and machine learning," European Journal of Operational Research, Elsevier, vol. 296(2), pages 635-651.
    15. Riccardo (Jack) Lucchetti & Luca Pedini, 2020. "ParMA: Parallelised Bayesian Model Averaging for Generalised Linear Models," Working Papers 2020:28, Department of Economics, University of Venice "Ca' Foscari".
    16. Atkinson, Scott E. & Tsionas, Mike G., 2021. "Generalized estimation of productivity with multiple bad outputs: The importance of materials balance constraints," European Journal of Operational Research, Elsevier, vol. 292(3), pages 1165-1186.
    17. Robert Lehmann & Antje Weyh, 2016. "Forecasting Employment in Europe: Are Survey Results Helpful?," Journal of Business Cycle Research, Springer;Centre for International Research on Economic Tendency Surveys (CIRET), vol. 12(1), pages 81-117, September.
    18. Castle Jennifer L. & Doornik Jurgen A & Hendry David F., 2011. "Evaluating Automatic Model Selection," Journal of Time Series Econometrics, De Gruyter, vol. 3(1), pages 1-33, February.
    19. Jia Liu & John M. Maheu & Yong Song, 2024. "Identification and forecasting of bull and bear markets using multivariate returns," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 39(5), pages 723-745, August.
    20. Dimitrakopoulos, Stefanos & Tsionas, Mike, 2019. "Ordinal-response GARCH models for transaction data: A forecasting exercise," International Journal of Forecasting, Elsevier, vol. 35(4), pages 1273-1287.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:istatr:v:90:y:2022:i:1:p:165-183. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/isiiinl.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.