IDEAS home Printed from https://ideas.repec.org/a/bla/jorssa/v177y2014i1p63-82.html
   My bibliography  Save this article

What do healthcare workers know about sudden infant death syndrome?: the results of the Italian campaign ‘GenitoriPiù’

Author

Listed:
  • Federico de Luca
  • Giovanna Boccuzzo

Abstract

type="main" xml:lang="en"> Summary. The paper analyses the data resulting from the Italian campaign for newborns’ parents, ‘GenitoriPiù’, and focuses on the assessment of healthcare workers’ knowledge about sudden infant death syndrome. Considering two different response sets (dichotomous and polytomous), we used a Rasch model and a logistic quantile regression to analyse which demographic and professional backgrounds influenced the degree of knowledge of this topic. Significant differences between regions are evident, and the effect of training initiatives is proven as a way of rectifying these differences. With regard to professional background, the best-prepared healthcare workers are paediatricians and healthcare workers working in birth centres and family planning clinics.

Suggested Citation

  • Federico de Luca & Giovanna Boccuzzo, 2014. "What do healthcare workers know about sudden infant death syndrome?: the results of the Italian campaign ‘GenitoriPiù’," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 177(1), pages 63-82, January.
  • Handle: RePEc:bla:jorssa:v:177:y:2014:i:1:p:63-82
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1111/j.1467-985X.2012.01081.x
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Nicola Orsini & Matteo Bottai, 2011. "Logistic quantile regression in Stata," Stata Journal, StataCorp LP, vol. 11(3), pages 327-344, September.
    2. Shah, T. & Sullivan, K. & Carter, J., 2006. "Sudden infant death syndrome and reported maternal smoking during pregnancy," American Journal of Public Health, American Public Health Association, vol. 96(10), pages 1757-1759.
    3. Xiaohui Zheng & Sophia Rabe-Hesketh, 2007. "Estimating parameters of dichotomous and ordinal item response models with gllamm," Stata Journal, StataCorp LP, vol. 7(3), pages 313-333, September.
    4. David Andrich, 1978. "A rating formulation for ordered response categories," Psychometrika, Springer;The Psychometric Society, vol. 43(4), pages 561-573, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Eun-Young Park & Soojung Chae, 2020. "Rasch Analysis of the Korean Parenting Stress Index Short Form (K-PSI-SF) in Mothers of Children with Cerebral Palsy," IJERPH, MDPI, vol. 17(19), pages 1-11, September.
    2. P. A. Ferrari & S. Salini, 2008. "Measuring Service Quality: The Opinion of Europeans about Utilities," Working Papers 2008.36, Fondazione Eni Enrico Mattei.
    3. Chang, Hsin-Li & Yang, Cheng-Hua, 2008. "Explore airlines’ brand niches through measuring passengers’ repurchase motivation—an application of Rasch measurement," Journal of Air Transport Management, Elsevier, vol. 14(3), pages 105-112.
    4. Ivana Bassi & Matteo Carzedda & Enrico Gori & Luca Iseppi, 2022. "Rasch analysis of consumer attitudes towards the mountain product label," Agricultural and Food Economics, Springer;Italian Society of Agricultural Economics (SIDEA), vol. 10(1), pages 1-25, December.
    5. Antonio Caronni & Marina Ramella & Pietro Arcuri & Claudia Salatino & Lucia Pigini & Maurizio Saruggia & Chiara Folini & Stefano Scarano & Rosa Maria Converti, 2023. "The Rasch Analysis Shows Poor Construct Validity and Low Reliability of the Quebec User Evaluation of Satisfaction with Assistive Technology 2.0 (QUEST 2.0) Questionnaire," IJERPH, MDPI, vol. 20(2), pages 1-19, January.
    6. Wanke, Peter Fernandes & Chiappetta Jabbour, Charbel José & Moreira Antunes, Jorge Junio & Lopes de Sousa Jabbour, Ana Beatriz & Roubaud, David & Sobreiro, Vinicius Amorim & Santibanez Gonzalez‬, Erne, 2021. "An original information entropy-based quantitative evaluation model for low-carbon operations in an emerging market," International Journal of Production Economics, Elsevier, vol. 234(C).
    7. Hua-Hua Chang, 1996. "The asymptotic posterior normality of the latent trait for polytomous IRT models," Psychometrika, Springer;The Psychometric Society, vol. 61(3), pages 445-463, September.
    8. Curt Hagquist & Raili Välimaa & Nina Simonsen & Sakari Suominen, 2017. "Differential Item Functioning in Trend Analyses of Adolescent Mental Health – Illustrative Examples Using HBSC-Data from Finland," Child Indicators Research, Springer;The International Society of Child Indicators (ISCI), vol. 10(3), pages 673-691, September.
    9. Wang, Luming & Finn, Adam, 2014. "A psychometric theory that measures up to marketing reality: An adapted Many Faceted IRT model," Australasian marketing journal, Elsevier, vol. 22(2), pages 93-102.
    10. Qiu-Yue Zhong & Bizu Gelaye & Alan M Zaslavsky & Jesse R Fann & Marta B Rondon & Sixto E Sánchez & Michelle A Williams, 2015. "Diagnostic Validity of the Generalized Anxiety Disorder - 7 (GAD-7) among Pregnant Women," PLOS ONE, Public Library of Science, vol. 10(4), pages 1-17, April.
    11. Cristante, Francesca & Robusto, Egidio, 1999. "Assessing dependence among subjects' responses," Mathematical Social Sciences, Elsevier, vol. 38(3), pages 259-274, November.
    12. Amy Snyder & Kenneth Royal, 2016. "Investigating the Financial Awareness and Behaviors of Veterinary Medical Students," International Journal of Economics and Finance, Canadian Center of Science and Education, vol. 8(7), pages 201-201, July.
    13. Nicole Gideon & Nick Hawkes & Jonathan Mond & Rob Saunders & Kate Tchanturia & Lucy Serpell, 2016. "Development and Psychometric Validation of the EDE-QS, a 12 Item Short Form of the Eating Disorder Examination Questionnaire (EDE-Q)," PLOS ONE, Public Library of Science, vol. 11(5), pages 1-19, May.
    14. Alex Bryson & Erling Barth & Harald Dale-Olsen, 2013. "The Effects of Organizational Change on Worker Well-Being and the Moderating Role of Trade Unions," ILR Review, Cornell University, ILR School, vol. 66(4), pages 989-1011, July.
    15. Huang, Jen-Hung & Peng, Kua-Hsin, 2012. "Fuzzy Rasch model in TOPSIS: A new approach for generating fuzzy numbers to assess the competitiveness of the tourism industries in Asian countries," Tourism Management, Elsevier, vol. 33(2), pages 456-465.
    16. Geofferey Masters & Benjamin Wright, 1984. "The essential process in a family of measurement models," Psychometrika, Springer;The Psychometric Society, vol. 49(4), pages 529-544, December.
    17. Salzberger, Thomas & Newton, Fiona J. & Ewing, Michael T., 2014. "Detecting gender item bias and differential manifest response behavior: A Rasch-based solution," Journal of Business Research, Elsevier, vol. 67(4), pages 598-607.
    18. Karen M. Conrad & Kendon J. Conrad & Lora L. Passetti & Rodney R. Funk & Michael L. Dennis, 2015. "Validation of the Full and Short-Form Self-Help Involvement Scale Against the Rasch Measurement Model," Evaluation Review, , vol. 39(4), pages 395-427, August.
    19. Rasmus A. X. Persson, 2023. "Theoretical evaluation of partial credit scoring of the multiple-choice test item," METRON, Springer;Sapienza Università di Roma, vol. 81(2), pages 143-161, August.
    20. Wendy L. Martin & Alexander McKelvie & G. T. Lumpkin, 2016. "Centralization and delegation practices in family versus non-family SMEs: a Rasch analysis," Small Business Economics, Springer, vol. 47(3), pages 755-769, October.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jorssa:v:177:y:2014:i:1:p:63-82. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/rssssea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.