IDEAS home Printed from https://ideas.repec.org/a/oup/biomet/v91y2004i1p153-164.html
   My bibliography  Save this article

Design sensitivity in observational studies

Author

Listed:
  • Paul R. Rosenbaum

Abstract

Outside the field of statistics, the literature on observational studies offers advice about research designs or strategies for judging whether or not an association is causal, such as multiple operationalism or a dose-response relationship. These useful suggestions are typically informal and qualitative. A quantitative measure, design sensitivity, is proposed for measuring the contribution such strategies make in distinguishing causal effects from hidden biases. Several common strategies are then evaluated in terms of their contribution to design sensitivity. A related method for computing the power of a sensitivity analysis is also developed. Copyright Biometrika Trust 2004, Oxford University Press.

Suggested Citation

  • Paul R. Rosenbaum, 2004. "Design sensitivity in observational studies," Biometrika, Biometrika Trust, vol. 91(1), pages 153-164, March.
  • Handle: RePEc:oup:biomet:v:91:y:2004:i:1:p:153-164
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kwonsang Lee & Dylan S. Small & Paul R. Rosenbaum, 2018. "A powerful approach to the study of moderate effect modification in observational studies," Biometrics, The International Biometric Society, vol. 74(4), pages 1161-1170, December.
    2. Siyu Heng & Hyunseung Kang & Dylan S. Small & Colin B. Fogarty, 2021. "Increasing power for observational studies of aberrant response: An adaptive approach," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 83(3), pages 482-504, July.
    3. Jerzy Michalek, 2012. "Counterfactual impact evaluation of EU rural development programmes - Propensity Score Matching methodology applied to selected EU Member States. Volume 2: A regional approach," JRC Research Reports JRC72060, Joint Research Centre.
    4. Samuel D. Pimentel & Dylan S. Small & Paul R. Rosenbaum, 2016. "Constructed Second Control Groups and Attenuation of Unmeasured Biases," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 111(515), pages 1157-1167, July.
    5. Xuran Wang & Yang Jiang & Nancy R. Zhang & Dylan S. Small, 2018. "Sensitivity analysis and power for instrumental variable studies," Biometrics, The International Biometric Society, vol. 74(4), pages 1150-1160, December.
    6. Paul R. Rosenbaum, 2015. "Bahadur Efficiency of Sensitivity Analyses in Observational Studies," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 110(509), pages 205-217, March.
    7. Armstrong, Christopher S. & Guay, Wayne R. & Weber, Joseph P., 2010. "The role of information and financial reporting in corporate governance and debt contracting," Journal of Accounting and Economics, Elsevier, vol. 50(2-3), pages 179-234, December.
    8. Paul R. Rosenbaum, 2013. "Impact of Multiple Matched Controls on Design Sensitivity in Observational Studies," Biometrics, The International Biometric Society, vol. 69(1), pages 118-127, March.
    9. Paul R. Rosenbaum, 2011. "A New u-Statistic with Superior Design Sensitivity in Matched Observational Studies," Biometrics, The International Biometric Society, vol. 67(3), pages 1017-1027, September.
    10. Nicholas T. Longford, 2020. "Performance assessment as an application of causal inference," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 183(4), pages 1363-1385, October.
    11. Frida Skog, 2019. "Sibling Effects on Adult Earnings Among Poor and Wealthy Children Evidence from Sweden," Child Indicators Research, Springer;The International Society of Child Indicators (ISCI), vol. 12(3), pages 917-942, June.
    12. Nuoo‐Ting Molitor & Nicky Best & Chris Jackson & Sylvia Richardson, 2009. "Using Bayesian graphical models to model biases in observational studies and to combine multiple sources of data: application to low birth weight and water disinfection by‐products," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 172(3), pages 615-637, June.
    13. Paul R. Rosenbaum & Dylan S. Small, 2017. "An adaptive Mantel–Haenszel test for sensitivity analysis in observational studies," Biometrics, The International Biometric Society, vol. 73(2), pages 422-430, June.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:oup:biomet:v:91:y:2004:i:1:p:153-164. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Oxford University Press (email available below). General contact details of provider: https://academic.oup.com/biomet .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.