IDEAS home Printed from https://ideas.repec.org/a/bla/jinfst/v74y2023i2p283-300.html
   My bibliography  Save this article

A lightweight semantic‐enhanced interactive network for efficient short‐text matching

Author

Listed:
  • Chuanming Yu
  • Haodong Xue
  • Lu An
  • Gang Li

Abstract

Knowledge‐enhanced short‐text matching has been a significant task attracting much attention in recent years. However, the existing approaches cannot effectively balance effect and efficiency. Effective models usually consist of complex network structures leading to slow inference speed and the difficulties of applications in actual practice. In addition, most knowledge‐enhanced models try to link the mentions in the text to the entities of the knowledge graphs—the difficulties of entity linking decrease the generalizability among different datasets. To address these problems, we propose a lightweight Semantic‐Enhanced Interactive Network (SEIN) model for efficient short‐text matching. Unlike most current research, SEIN employs an unsupervised method to select WordNet's most appropriate paraphrase description as the external semantic knowledge. It focuses on integrating semantic information and interactive information of text while simplifying the structure of other modules. We conduct intensive experiments on four real‐world datasets, that is, Quora, Twitter‐URL, SciTail, and SICK‐E. Compared with state‐of‐the‐art methods, SEIN achieves the best performance on most datasets. The experimental results proved that introducing external knowledge could effectively improve the performance of the short‐text matching models. The research sheds light on the role of lightweight models in leveraging external knowledge to improve the effect of short‐text matching.

Suggested Citation

  • Chuanming Yu & Haodong Xue & Lu An & Gang Li, 2023. "A lightweight semantic‐enhanced interactive network for efficient short‐text matching," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 74(2), pages 283-300, February.
  • Handle: RePEc:bla:jinfst:v:74:y:2023:i:2:p:283-300
    DOI: 10.1002/asi.24731
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/asi.24731
    Download Restriction: no

    File URL: https://libkey.io/10.1002/asi.24731?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Hain, Daniel S. & Jurowetzki, Roman & Buchmann, Tobias & Wolf, Patrick, 2022. "A text-embedding-based approach to measuring patent-to-patent technological similarity," Technological Forecasting and Social Change, Elsevier, vol. 177(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yoon, Naeun & Sohn, So Young, 2024. "Assessment framework for automotive suppliers' technological adaptability in the electric vehicle era," Technological Forecasting and Social Change, Elsevier, vol. 203(C).
    2. Liu, Zhenfeng & Feng, Jian & Uden, Lorna, 2023. "Technology opportunity analysis using hierarchical semantic networks and dual link prediction," Technovation, Elsevier, vol. 128(C).
    3. Teng, Hao & Wang, Nan & Zhao, Hongyu & Hu, Yingtong & Jin, Haitao, 2024. "Enhancing semantic text similarity with functional semantic knowledge (FOP) in patents," Journal of Informetrics, Elsevier, vol. 18(1).
    4. Kraus, Sascha & Kumar, Satish & Lim, Weng Marc & Kaur, Jaspreet & Sharma, Anuj & Schiavone, Francesco, 2023. "From moon landing to metaverse: Tracing the evolution of Technological Forecasting and Social Change," Technological Forecasting and Social Change, Elsevier, vol. 189(C).
    5. Bekamiri, Hamid & Hain, Daniel S. & Jurowetzki, Roman, 2024. "PatentSBERTa: A deep NLP based hybrid model for patent distance and classification using augmented SBERT," Technological Forecasting and Social Change, Elsevier, vol. 206(C).
    6. Su, Yu-Shan & Huang, Hsini & Daim, Tugrul & Chien, Pan-Wei & Peng, Ru-Ling & Karaman Akgul, Arzu, 2023. "Assessing the technological trajectory of 5G-V2X autonomous driving inventions: Use of patent analysis," Technological Forecasting and Social Change, Elsevier, vol. 196(C).
    7. Puccetti, Giovanni & Giordano, Vito & Spada, Irene & Chiarello, Filippo & Fantoni, Gualtiero, 2023. "Technology identification from patent texts: A novel named entity recognition method," Technological Forecasting and Social Change, Elsevier, vol. 186(PB).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jinfst:v:74:y:2023:i:2:p:283-300. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.asis.org .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.