IDEAS home Printed from https://ideas.repec.org/a/bla/jfnres/v36y2013i4p471-492.html
   My bibliography  Save this article

Predicting Extreme Returns And Portfolio Management Implications

Author

Listed:
  • Andy Fodor
  • Kevin Krieger
  • Nathan Mauck
  • Greg Stevenson

Abstract

We consider which readily observable characteristics of individual stocks (e.g., option implied volatility, accounting data, analyst data) may be used to forecast subsequent extreme price movements. We are the first to explicitly consider the predictive influence of option implied volatility in such a framework, which we unsurprisingly find to be an important indicator of future extreme price movements. However, after controlling for implied volatility levels, other factors, particularly firm age and size, still have additional predictive power of extreme future returns. Furthermore, excluding predicted extreme return stocks leads to a portfolio that has lower risk (standard deviation of returns) without sacrificing performance.
(This abstract was borrowed from another version of this item.)

Suggested Citation

  • Andy Fodor & Kevin Krieger & Nathan Mauck & Greg Stevenson, 2013. "Predicting Extreme Returns And Portfolio Management Implications," Journal of Financial Research, Southern Finance Association;Southwestern Finance Association, vol. 36(4), pages 471-492, December.
  • Handle: RePEc:bla:jfnres:v:36:y:2013:i:4:p:471-492
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1111/jfir.12020
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Fama, Eugene F & French, Kenneth R, 1992. "The Cross-Section of Expected Stock Returns," Journal of Finance, American Finance Association, vol. 47(2), pages 427-465, June.
    2. Merton, Robert C, 1973. "An Intertemporal Capital Asset Pricing Model," Econometrica, Econometric Society, vol. 41(5), pages 867-887, September.
    3. John Y. Campbell & Sanford J. Grossman & Jiang Wang, 1993. "Trading Volume and Serial Correlation in Stock Returns," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 108(4), pages 905-939.
    4. Miller, Edward M, 1977. "Risk, Uncertainty, and Divergence of Opinion," Journal of Finance, American Finance Association, vol. 32(4), pages 1151-1168, September.
    5. Peterson, David R. & Smedema, Adam R., 2011. "The return impact of realized and expected idiosyncratic volatility," Journal of Banking & Finance, Elsevier, vol. 35(10), pages 2547-2558, October.
    6. Xiaoquan Jiang & Bong‐Soo Lee, 2006. "The Dynamic Relation Between Returns and Idiosyncratic Volatility," Financial Management, Financial Management Association International, vol. 35(2), pages 43-65, June.
    7. Wei Huang & Qianqiu Liu & S. Ghon Rhee & Liang Zhang, 2010. "Return Reversals, Idiosyncratic Risk, and Expected Returns," The Review of Financial Studies, Society for Financial Studies, vol. 23(1), pages 147-168, January.
    8. Hodrick, Robert J, 1992. "Dividend Yields and Expected Stock Returns: Alternative Procedures for Inference and Measurement," The Review of Financial Studies, Society for Financial Studies, vol. 5(3), pages 357-386.
    9. Wing Hong Chan & Ranjini Jha & Madhu Kalimipalli, 2009. "The Economic Value Of Using Realized Volatility In Forecasting Future Implied Volatility," Journal of Financial Research, Southern Finance Association;Southwestern Finance Association, vol. 32(3), pages 231-259, September.
    10. Lev, B & Thiagarajan, Sr, 1993. "Fundamental Information Analysis," Journal of Accounting Research, Wiley Blackwell, vol. 31(2), pages 190-215.
    11. Ang, Andrew & Hodrick, Robert J. & Xing, Yuhang & Zhang, Xiaoyan, 2009. "High idiosyncratic volatility and low returns: International and further U.S. evidence," Journal of Financial Economics, Elsevier, vol. 91(1), pages 1-23, January.
    12. Ofek, Eli & Richardson, Matthew & Whitelaw, Robert F., 2004. "Limited arbitrage and short sales restrictions: evidence from the options markets," Journal of Financial Economics, Elsevier, vol. 74(2), pages 305-342, November.
    13. Xing, Yuhang & Zhang, Xiaoyan & Zhao, Rui, 2010. "What Does the Individual Option Volatility Smirk Tell Us About Future Equity Returns?," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 45(3), pages 641-662, June.
    14. Ser-Huang Poon & Clive W.J. Granger, 2003. "Forecasting Volatility in Financial Markets: A Review," Journal of Economic Literature, American Economic Association, vol. 41(2), pages 478-539, June.
    15. Brockman, Paul & Turtle, H. J., 2003. "A barrier option framework for corporate security valuation," Journal of Financial Economics, Elsevier, vol. 67(3), pages 511-529, March.
    16. Kevin Krieger & David Peterson, 2009. "Predicting stock splits with the help of firm-specific experiences," Journal of Economics and Finance, Springer;Academy of Economics and Finance, vol. 33(4), pages 410-421, October.
    17. Fu, Fangjian, 2009. "Idiosyncratic risk and the cross-section of expected stock returns," Journal of Financial Economics, Elsevier, vol. 91(1), pages 24-37, January.
    18. Andrew Ang & Robert J. Hodrick & Yuhang Xing & Xiaoyan Zhang, 2006. "The Cross‐Section of Volatility and Expected Returns," Journal of Finance, American Finance Association, vol. 61(1), pages 259-299, February.
    19. repec:bla:jfinan:v:53:y:1998:i:3:p:1131-1147 is not listed on IDEAS
    20. Fama, Eugene F. & French, Kenneth R., 1993. "Common risk factors in the returns on stocks and bonds," Journal of Financial Economics, Elsevier, vol. 33(1), pages 3-56, February.
    21. Merton, Robert C., 1980. "On estimating the expected return on the market : An exploratory investigation," Journal of Financial Economics, Elsevier, vol. 8(4), pages 323-361, December.
    22. William F. Sharpe, 1964. "Capital Asset Prices: A Theory Of Market Equilibrium Under Conditions Of Risk," Journal of Finance, American Finance Association, vol. 19(3), pages 425-442, September.
    23. Christensen, B. J. & Prabhala, N. R., 1998. "The relation between implied and realized volatility," Journal of Financial Economics, Elsevier, vol. 50(2), pages 125-150, November.
    24. Cremers, Martijn & Weinbaum, David, 2010. "Deviations from Put-Call Parity and Stock Return Predictability," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 45(2), pages 335-367, April.
    25. Xiaoquan Jiang & Bong-Soo Lee, 2006. "The Dynamic Relation Between Returns and Idiosyncratic Volatility," Financial Management, Financial Management Association, vol. 35(2), Summer.
    26. Jegadeesh, Narasimhan & Titman, Sheridan, 1993. "Returns to Buying Winners and Selling Losers: Implications for Stock Market Efficiency," Journal of Finance, American Finance Association, vol. 48(1), pages 65-91, March.
    27. Black, Fischer, 1972. "Capital Market Equilibrium with Restricted Borrowing," The Journal of Business, University of Chicago Press, vol. 45(3), pages 444-455, July.
    28. Blitz, D.C. & van Vliet, P., 2007. "The Volatility Effect: Lower Risk without Lower Return," ERIM Report Series Research in Management ERS-2007-044-F&A, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.
    29. Choong Tze Chua & Jeremy Goh & Zhe Zhang, 2010. "Expected Volatility, Unexpected Volatility, And The Cross‐Section Of Stock Returns," Journal of Financial Research, Southern Finance Association;Southwestern Finance Association, vol. 33(2), pages 103-123, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Switzer, Lorne N. & Tahaoglu, Cagdas & Zhao, Yun, 2017. "Volatility measures as predictors of extreme returns," Review of Financial Economics, Elsevier, vol. 35(C), pages 1-10.
    2. Echaust, Krzysztof, 2021. "Asymmetric tail dependence between stock market returns and implied volatility," The Journal of Economic Asymmetries, Elsevier, vol. 23(C).
    3. Feng Sun & Cheng Liu & Xiaoguang Zhou, 2017. "Analysis of industry risk premium with MVS three dimensions vector factor model," Cogent Economics & Finance, Taylor & Francis Journals, vol. 5(1), pages 1374814-137, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Guo, Hui & Qiu, Buhui, 2014. "Options-implied variance and future stock returns," Journal of Banking & Finance, Elsevier, vol. 44(C), pages 93-113.
    2. Adam Zaremba & Jacob Koby Shemer, 2018. "Price-Based Investment Strategies," Springer Books, Springer, number 978-3-319-91530-2, January.
    3. Aboulamer, Anas & Kryzanowski, Lawrence, 2016. "Are idiosyncratic volatility and MAX priced in the Canadian market?," Journal of Empirical Finance, Elsevier, vol. 37(C), pages 20-36.
    4. Amit Goyal, 2012. "Empirical cross-sectional asset pricing: a survey," Financial Markets and Portfolio Management, Springer;Swiss Society for Financial Market Research, vol. 26(1), pages 3-38, March.
    5. Zhong, Angel, 2018. "Idiosyncratic volatility in the Australian equity market," Pacific-Basin Finance Journal, Elsevier, vol. 50(C), pages 105-125.
    6. Switzer, Lorne N. & Tahaoglu, Cagdas & Zhao, Yun, 2017. "Volatility measures as predictors of extreme returns," Review of Financial Economics, Elsevier, vol. 35(C), pages 1-10.
    7. Hassen Raîs, 2016. "Idiosyncratic Risk and the Cross-Section of European Insurance Equity Returns," Post-Print hal-01764088, HAL.
    8. Miffre, Joëlle & Brooks, Chris & Li, Xiafei, 2013. "Idiosyncratic volatility and the pricing of poorly-diversified portfolios," International Review of Financial Analysis, Elsevier, vol. 30(C), pages 78-85.
    9. Bai, Jennie & Bali, Turan G. & Wen, Quan, 2021. "Is there a risk-return tradeoff in the corporate bond market? Time-series and cross-sectional evidence," Journal of Financial Economics, Elsevier, vol. 142(3), pages 1017-1037.
    10. Jiang, Danling & Peterson, David R. & Doran, James S., 2014. "Short-sale constraints and the idiosyncratic volatility puzzle: An event study approach," Journal of Empirical Finance, Elsevier, vol. 28(C), pages 36-59.
    11. Stanislav Bozhkov & Habin Lee & Uthayasankar Sivarajah & Stella Despoudi & Monomita Nandy, 2020. "Idiosyncratic risk and the cross-section of stock returns: the role of mean-reverting idiosyncratic volatility," Annals of Operations Research, Springer, vol. 294(1), pages 419-452, November.
    12. Yunting Liu, 2022. "The Short-Run and Long-Run Components of Idiosyncratic Volatility and Stock Returns," Management Science, INFORMS, vol. 68(2), pages 1573-1589, February.
    13. Mohammadreza Tavakoli Baghdadabad & Girijasankar Mallik, 2018. "Global idiosyncratic risk moments," Empirical Economics, Springer, vol. 55(2), pages 731-764, September.
    14. Peterson, David R. & Smedema, Adam R., 2011. "The return impact of realized and expected idiosyncratic volatility," Journal of Banking & Finance, Elsevier, vol. 35(10), pages 2547-2558, October.
    15. Turan G. Bali & Robert F. Engle & Yi Tang, 2017. "Dynamic Conditional Beta Is Alive and Well in the Cross Section of Daily Stock Returns," Management Science, INFORMS, vol. 63(11), pages 3760-3779, November.
    16. Stefan Nagel, 2013. "Empirical Cross-Sectional Asset Pricing," Annual Review of Financial Economics, Annual Reviews, vol. 5(1), pages 167-199, November.
    17. Wan-Ni Lai & Yi-Ting Chen & Edward W. Sun, 2021. "Comonotonicity and low volatility effect," Annals of Operations Research, Springer, vol. 299(1), pages 1057-1099, April.
    18. Ciciretti, Rocco & Dalò, Ambrogio & Dam, Lammertjan, 2023. "The contributions of betas versus characteristics to the ESG premium," Journal of Empirical Finance, Elsevier, vol. 71(C), pages 104-124.
    19. Xiafei Li & Chris Brooks & Joëlle Miffre, 2009. "The Value Premium and Time-Varying Volatility," Journal of Business Finance & Accounting, Wiley Blackwell, vol. 36(9-10), pages 1252-1272.
    20. John Y. Campbell, 2000. "Asset Pricing at the Millennium," Journal of Finance, American Finance Association, vol. 55(4), pages 1515-1567, August.

    More about this item

    JEL classification:

    • G11 - Financial Economics - - General Financial Markets - - - Portfolio Choice; Investment Decisions
    • G00 - Financial Economics - - General - - - General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jfnres:v:36:y:2013:i:4:p:471-492. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/sfaaaea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.