IDEAS home Printed from https://ideas.repec.org/a/bla/istatr/v77y2009i2p222-240.html
   My bibliography  Save this article

Life Expectancies for Small Areas: A Bayesian Random Effects Methodology

Author

Listed:
  • Peter Congdon

Abstract

Monitoring small area contrasts in life expectancy is important for health policy purposes but subject to difficulties under conventional life table analysis. Additionally, the implicit model underlying conventional life table analysis involves a highly parametrized fixed effect approach. An alternative strategy proposed here involves an explicit model based on random effects for both small areas and age groups. The area effects are assumed to be spatially correlated, reflecting unknown mortality risk factors that are themselves typically spatially correlated. Often mortality observations are disaggregated by demographic category as well as by age and area, e.g. by gender or ethnic group, and multivariate area and age random effects will be used to pool over such groups. A case study considers variations in life expectancy in 1 118 small areas (known as wards) in Eastern England over a five‐year period 1999–2003. The case study deaths data are classified by gender, age, and area, and a bivariate model for area and age effects is therefore applied. The interrelationship between the random area effects and two major influences on small area life expectancy is demonstrated in the study, these being area socio‐economic status (or deprivation) and the location of nursing and residential homes for frail elderly. Le suivi des contrastes d'espérance de vie entre petites régions est important pour les politiques de santé mais l'analyse en est difficile avec les tables de vie conventionnelles. De plus le modèle implicite qui sous‐tend l'analyse conventionnelle des tables de vie inclut une approche d'effet fixe fortement paramétrée. On propose ici une stratégie alternative qui comprend un modèle explicite basé sur des effets aléatoires pour des petites zones ainsi que des groupes d'âge. Les effets de zone sont supposés être corrélés spatialement, reflétant des facteurs de risque de mortalité inconnus, eux‐mêmes corrélés spatialement. Les observations de mortalité sont souvent désagrégées par catégorie démographique de même que par âge et région, par sexe ou groupe ethnique, et les effets aléatoires multivariés de région et d'âge seront utilisés pour mettre en commun de tels groupes. Une étude de cas considère les variations d'espérance de vie dans 1118 petites zones (connues comme unités/circonscriptions) en Angleterre orientale sur une période de cinq ans 1999–2003. Les données de mortalité de l'étude de cas sont classées par sexe, âge et zone, et un modèle bivarié pour les effets de zone et d'âge est appliqué. L'interrelation entre les effets aléatoires de zone et deux influences majeures sur l'espérance de vie dans une petite zone sont démontrée dans l'étude: ce sont le statut socioéconomique de la zone et la localization des soins (infirmières) et des résidences pour personnes âgées en situation précaire.

Suggested Citation

  • Peter Congdon, 2009. "Life Expectancies for Small Areas: A Bayesian Random Effects Methodology," International Statistical Review, International Statistical Institute, vol. 77(2), pages 222-240, August.
  • Handle: RePEc:bla:istatr:v:77:y:2009:i:2:p:222-240
    DOI: 10.1111/j.1751-5823.2009.00080.x
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/j.1751-5823.2009.00080.x
    Download Restriction: no

    File URL: https://libkey.io/10.1111/j.1751-5823.2009.00080.x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Dani Gamerman, 1991. "Dynamic Bayesian Models for Survival Data," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 40(1), pages 63-79, March.
    2. Julian Besag & Jeremy York & Annie Mollié, 1991. "Bayesian image restoration, with two applications in spatial statistics," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 43(1), pages 1-20, March.
    3. David J. Spiegelhalter & Nicola G. Best & Bradley P. Carlin & Angelika Van Der Linde, 2002. "Bayesian measures of model complexity and fit," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 64(4), pages 583-639, October.
    4. Senior, Martyn & Williams, Huw & Higgs, Gary, 2000. "Urban-rural mortality differentials: controlling for material deprivation," Social Science & Medicine, Elsevier, vol. 51(2), pages 289-305, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Carl P. Schmertmann & Marcos R. Gonzaga, 2018. "Bayesian Estimation of Age-Specific Mortality and Life Expectancy for Small Areas With Defective Vital Records," Demography, Springer;Population Association of America (PAA), vol. 55(4), pages 1363-1388, August.
    2. Bernard Baffour & James Raymer, 2019. "Estimating multiregional survivorship probabilities for sparse data: An application to immigrant populations in Australia, 1981–2011," Demographic Research, Max Planck Institute for Demographic Research, Rostock, Germany, vol. 40(18), pages 463-502.
    3. Monica Alexander & Emilio Zagheni & Magali Barbieri, 2017. "A Flexible Bayesian Model for Estimating Subnational Mortality," Demography, Springer;Population Association of America (PAA), vol. 54(6), pages 2025-2041, December.
    4. Tom Wilson & Irina Grossman & Monica Alexander & Phil Rees & Jeromey Temple, 2022. "Methods for Small Area Population Forecasts: State-of-the-Art and Research Needs," Population Research and Policy Review, Springer;Southern Demographic Association (SDA), vol. 41(3), pages 865-898, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Eibich, Peter & Ziebarth, Nicolas, 2014. "Examining the Structure of Spatial Health Effects in Germany Using Hierarchical Bayes Models," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 49, pages 305-320.
    2. Mayer Alvo & Jingrui Mu, 2023. "COVID-19 Data Analysis Using Bayesian Models and Nonparametric Geostatistical Models," Mathematics, MDPI, vol. 11(6), pages 1-13, March.
    3. Massimo Bilancia & Giacomo Demarinis, 2014. "Bayesian scanning of spatial disease rates with integrated nested Laplace approximation (INLA)," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 23(1), pages 71-94, March.
    4. Douglas R. M. Azevedo & Marcos O. Prates & Dipankar Bandyopadhyay, 2021. "MSPOCK: Alleviating Spatial Confounding in Multivariate Disease Mapping Models," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 26(3), pages 464-491, September.
    5. Francisca Corpas-Burgos & Miguel A. Martinez-Beneito, 2021. "An Autoregressive Disease Mapping Model for Spatio-Temporal Forecasting," Mathematics, MDPI, vol. 9(4), pages 1-17, February.
    6. Li Xu & Qingshan Jiang & David R. Lairson, 2019. "Spatio-Temporal Variation of Gender-Specific Hypertension Risk: Evidence from China," IJERPH, MDPI, vol. 16(22), pages 1-26, November.
    7. Isabel Martínez-Pérez & Verónica González-Iglesias & Valentín Rodríguez Suárez & Ana Fernández-Somoano, 2021. "Spatial Distribution of Hospitalizations for Ischemic Heart Diseases in the Central Region of Asturias, Spain," IJERPH, MDPI, vol. 18(23), pages 1-10, November.
    8. F. Corpas-Burgos & P. Botella-Rocamora & M. A. Martinez-Beneito, 2019. "On the convenience of heteroscedasticity in highly multivariate disease mapping," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 28(4), pages 1229-1250, December.
    9. Alexandra Schmidt & Ajax Moreira & Steven Helfand & Thais Fonseca, 2009. "Spatial stochastic frontier models: accounting for unobserved local determinants of inefficiency," Journal of Productivity Analysis, Springer, vol. 31(2), pages 101-112, April.
    10. Maike Tahden & Juliane Manitz & Klaus Baumgardt & Gerhard Fell & Thomas Kneib & Guido Hegasy, 2016. "Epidemiological and Ecological Characterization of the EHEC O104:H4 Outbreak in Hamburg, Germany, 2011," PLOS ONE, Public Library of Science, vol. 11(10), pages 1-19, October.
    11. Marc Marí-Dell’Olmo & Miguel Ángel Martínez-Beneito, 2015. "A Multilevel Regression Model for Geographical Studies in Sets of Non-Adjacent Cities," PLOS ONE, Public Library of Science, vol. 10(8), pages 1-12, August.
    12. Peter Congdon, 2011. "The Spatial Pattern of Suicide in the US in Relation to Deprivation, Fragmentation and Rurality," Urban Studies, Urban Studies Journal Limited, vol. 48(10), pages 2101-2122, August.
    13. Shadi Rahimzadeh & Beata Burczynska & Alireza Ahmadvand & Ali Sheidaei & Sara Khademioureh & Forough Pazhuheian & Sahar Saeedi Moghaddam & James Bentham & Farshad Farzadfar & Mariachiara Di Cesare, 2021. "Geographical and socioeconomic inequalities in female breast cancer incidence and mortality in Iran: A Bayesian spatial analysis of registry data," PLOS ONE, Public Library of Science, vol. 16(3), pages 1-16, March.
    14. Darren J. Mayne & Geoffrey G. Morgan & Bin B. Jalaludin & Adrian E. Bauman, 2018. "Does Walkability Contribute to Geographic Variation in Psychosocial Distress? A Spatial Analysis of 91,142 Members of the 45 and Up Study in Sydney, Australia," IJERPH, MDPI, vol. 15(2), pages 1-24, February.
    15. Marcus L. Nascimento & Kelly C. M. Gonçalves & Mario Jorge Mendonça, 2023. "Spatio-Temporal Instrumental Variables Regression with Missing Data: A Bayesian Approach," Computational Economics, Springer;Society for Computational Economics, vol. 62(1), pages 29-47, June.
    16. Wu, Peijie & Meng, Xianghai & Song, Li, 2021. "Bayesian space–time modeling of bicycle and pedestrian crash risk by injury severity levels to explore the long-term spatiotemporal effects," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 581(C).
    17. Samson B. Adebayo, 2004. "Bayesian geoadditive modelling of breastfeeding initiation in Nigeria," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 19(2), pages 267-281.
    18. Ferreira, Marco A.R. & Porter, Erica M. & Franck, Christopher T., 2021. "Fast and scalable computations for Gaussian hierarchical models with intrinsic conditional autoregressive spatial random effects," Computational Statistics & Data Analysis, Elsevier, vol. 162(C).
    19. Haiyue Liu & Chuanyun Fu & Chaozhe Jiang & Yue Zhou & Chengyuan Mao & Jining Zhang, 2020. "Bayesian hierarchical spatial count modeling of taxi speeding events based on GPS trajectory data," PLOS ONE, Public Library of Science, vol. 15(11), pages 1-17, November.
    20. Muhammed Semakula & Franco̧is Niragire & Christel Faes, 2020. "Bayesian spatio-temporal modeling of malaria risk in Rwanda," PLOS ONE, Public Library of Science, vol. 15(9), pages 1-16, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:istatr:v:77:y:2009:i:2:p:222-240. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/isiiinl.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.