IDEAS home Printed from https://ideas.repec.org/a/bla/inecol/v28y2024i4p709-726.html
   My bibliography  Save this article

Understanding key mineral supply chain dynamics using economics‐informed material flow analysis and Bayesian optimization

Author

Listed:
  • John Ryter
  • Karan Bhuwalka
  • Michelena O'Rourke
  • Luca Montanelli
  • David Cohen‐Tanugi
  • Richard Roth
  • Elsa Olivetti

Abstract

The low‐carbon energy transition requires significant increases in production for many mineral commodities. Understanding demand, technological requirements, and prices associated with this production increase requires understanding the supply chain dynamics of many minerals simultaneously, and via a consistent framework. A generalized economics‐informed material flow method, global materials modeling using Bayesian optimization, captures the market dynamics of key mineral commodities. The method relies only on a limited set of widely available historical data as input, enabling quantification of economic relationships (elasticities) for supply chain components where data are sparse, and relationships cannot be obtained via traditional statistical approaches. Building upon established material flow analysis (MFA) and economic modeling techniques, Bayesian optimization was applied to fit an economics‐informed MFA model to global historical demand, supply, and price for aluminum, copper, gold, lead, nickel, silver, iron, tin, and zinc. This approach enables estimates for the evolution of ore grades, mine costs, refining charges, sector‐specific demand, and scrap collection for each commodity. Economic relationships were quantified and compared with a database compiled from the literature, including 1333 values from 213 analyses across 65 publications. Discrepancies in methods and limited coverage make use of these parameters in modeling efforts difficult. This work provides a single, homogeneous, probabilistic approach to identifying economic relationships across mineral supply chains, with uncertainty quantification, a literature database for comparison, and a modeling framework in which to use them. This article met the requirements for a Gold‐Gold JIE data openness badge described at http://jie.click/badges.

Suggested Citation

  • John Ryter & Karan Bhuwalka & Michelena O'Rourke & Luca Montanelli & David Cohen‐Tanugi & Richard Roth & Elsa Olivetti, 2024. "Understanding key mineral supply chain dynamics using economics‐informed material flow analysis and Bayesian optimization," Journal of Industrial Ecology, Yale University, vol. 28(4), pages 709-726, August.
  • Handle: RePEc:bla:inecol:v:28:y:2024:i:4:p:709-726
    DOI: 10.1111/jiec.13517
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/jiec.13517
    Download Restriction: no

    File URL: https://libkey.io/10.1111/jiec.13517?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Carlos F. A. Arranz & Caleb Kwong & Vania Sena, 2023. "The effect of consumption and production policies on circular economy business models: A machine learning approach," Journal of Industrial Ecology, Yale University, vol. 27(4), pages 1089-1104, August.
    2. Fisher, L. A. & Owen, A. D., 1981. "An economic model of the US aluminium market," Resources Policy, Elsevier, vol. 7(3), pages 150-160, September.
    3. Franklin M. Fisher & Paul H. Cootner & Martin N. Baily, 1972. "An Econometric Model of the World Copper Industry," Bell Journal of Economics, The RAND Corporation, vol. 3(2), pages 568-609, Autumn.
    4. Liang Yuan & Weisheng Lu & Fan Xue & Maosu Li, 2023. "Building feature‐based machine learning regression to quantify urban material stocks: A Hong Kong study," Journal of Industrial Ecology, Yale University, vol. 27(1), pages 336-349, February.
    5. Jan Streeck & Stefan Pauliuk & Hanspeter Wieland & Dominik Wiedenhofer, 2023. "A review of methods to trace material flows into final products in dynamic material flow analysis: From industry shipments in physical units to monetary input–output tables, Part 1," Journal of Industrial Ecology, Yale University, vol. 27(2), pages 436-456, April.
    6. Trevor Zink & Roland Geyer & Richard Startz, 2018. "Toward Estimating Displaced Primary Production from Recycling: A Case Study of U.S. Aluminum," Journal of Industrial Ecology, Yale University, vol. 22(2), pages 314-326, April.
    7. Zhu, Xuehong & Ding, Qian & Chen, Jinyu, 2022. "How does critical mineral trade pattern affect renewable energy development? The mediating role of renewable energy technological progress," Energy Economics, Elsevier, vol. 112(C).
    8. Xiarchos, Irene M. & Fletcher, Jerald J., 2009. "Price and volatility transmission between primary and scrap metal markets," Resources, Conservation & Recycling, Elsevier, vol. 53(12), pages 664-673.
    9. Muhammad Shahbaz & Smile Dube & Ilhan Ozturk & Abdul Jalil, 2015. "Testing the Environmental Kuznets Curve Hypothesis in Portugal," International Journal of Energy Economics and Policy, Econjournals, vol. 5(2), pages 475-481.
    10. Fu, Xinkai & Ueland, Stian M. & Olivetti, Elsa, 2017. "Econometric modeling of recycled copper supply," Resources, Conservation & Recycling, Elsevier, vol. 122(C), pages 219-226.
    11. Ehrlich, Lars G., 2018. "What drives nickel prices: A structural VAR approach," HWWI Research Papers 186, Hamburg Institute of International Economics (HWWI).
    12. Slade, Margaret E., 1980. "The effects of higher energy prices and declining ore quality : Copper--aluminium substitution and recycling in the USA," Resources Policy, Elsevier, vol. 6(3), pages 223-239, September.
    13. Hojman, David E., 1981. "An econometric model of the international bauxite-aluminium economy," Resources Policy, Elsevier, vol. 7(2), pages 87-102, June.
    14. Guiomar Calvo & Gavin Mudd & Alicia Valero & Antonio Valero, 2016. "Decreasing Ore Grades in Global Metallic Mining: A Theoretical Issue or a Global Reality?," Resources, MDPI, vol. 5(4), pages 1-14, November.
    15. John Ryter & Xinkai Fu & Karan Bhuwalka & Richard Roth & Elsa A. Olivetti, 2021. "Emission impacts of China’s solid waste import ban and COVID-19 in the copper supply chain," Nature Communications, Nature, vol. 12(1), pages 1-13, December.
    16. Xaysackda Vilaysouk & Savath Saypadith & Seiji Hashimoto, 2022. "Semisupervised machine learning classification framework for material intensity parameters of residential buildings," Journal of Industrial Ecology, Yale University, vol. 26(1), pages 72-87, February.
    17. Zhen Yang & Jinhong Du & Yiting Lin & Zhen Du & Li Xia & Qianchuan Zhao & Xiaohong Guan, 2022. "Increasing the energy efficiency of a data center based on machine learning," Journal of Industrial Ecology, Yale University, vol. 26(1), pages 323-335, February.
    18. Magnus Ericsson & Johannes Drielsma & David Humphreys & Per Storm & Pär Weihed, 2019. "Why current assessments of ‘future efforts’ are no basis for establishing policies on material use—a response to research on ore grades," Mineral Economics, Springer;Raw Materials Group (RMG);Luleå University of Technology, vol. 32(1), pages 111-121, April.
    19. Franco Donati & Sébastien M. R. Dente & Chen Li & Xaysackda Vilaysouk & Andreas Froemelt & Rohit Nishant & Gang Liu & Arnold Tukker & Seiji Hashimoto, 2022. "The future of artificial intelligence in the context of industrial ecology," Journal of Industrial Ecology, Yale University, vol. 26(4), pages 1175-1181, August.
    20. John Ryter & Xinkai Fu & Karan Bhuwalka & Richard Roth & Elsa Olivetti, 2022. "Assessing recycling, displacement, and environmental impacts using an economics‐informed material system model," Journal of Industrial Ecology, Yale University, vol. 26(3), pages 1010-1024, June.
    21. Rafati, Mohammed R., 1982. "An econometric model of the world nickel industry," Kiel Working Papers 160, Kiel Institute for the World Economy (IfW Kiel).
    22. Gleich, Benedikt & Achzet, Benjamin & Mayer, Herbert & Rathgeber, Andreas, 2013. "An empirical approach to determine specific weights of driving factors for the price of commodities—A contribution to the measurement of the economic scarcity of minerals and metals," Resources Policy, Elsevier, vol. 38(3), pages 350-362.
    23. Chen, Jinyu & Luo, Qian & Tu, Yan & Ren, Xiaohang & Naderi, Niki, 2023. "Renewable energy transition and metal consumption: Dynamic evolution analysis based on transnational data," Resources Policy, Elsevier, vol. 85(PB).
    24. Valero, Alicia & Valero, Antonio & Calvo, Guiomar & Ortego, Abel & Ascaso, Sonia & Palacios, Jose-Luis, 2018. "Global material requirements for the energy transition. An exergy flow analysis of decarbonisation pathways," Energy, Elsevier, vol. 159(C), pages 1175-1184.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Karan Bhuwalka & Randolph E. Kirchain & Elsa A. Olivetti & Richard Roth, 2023. "Quantifying the drivers of long‐term prices in materials supply chains," Journal of Industrial Ecology, Yale University, vol. 27(1), pages 141-154, February.
    2. Rivera, Nilza & Guzmán, Juan Ignacio & Jara, José Joaquín & Lagos, Gustavo, 2021. "Evaluation of econometric models of secondary refined copper supply," Resources Policy, Elsevier, vol. 73(C).
    3. Fu, Xinkai & Ueland, Stian M. & Olivetti, Elsa, 2017. "Econometric modeling of recycled copper supply," Resources, Conservation & Recycling, Elsevier, vol. 122(C), pages 219-226.
    4. Thibault Fally & James Sayre, 2018. "Commodity Trade Matters," 2018 Meeting Papers 172, Society for Economic Dynamics.
    5. John Ryter & Xinkai Fu & Karan Bhuwalka & Richard Roth & Elsa Olivetti, 2022. "Assessing recycling, displacement, and environmental impacts using an economics‐informed material system model," Journal of Industrial Ecology, Yale University, vol. 26(3), pages 1010-1024, June.
    6. Pothen, Frank, 2013. "The metal resources (METRO) model: A dynamic partial equilibrium model for metal markets applied to rare earth elements," ZEW Discussion Papers 13-112, ZEW - Leibniz Centre for European Economic Research.
    7. Marie K. Schellens & Johanna Gisladottir, 2018. "Critical Natural Resources: Challenging the Current Discourse and Proposal for a Holistic Definition," Resources, MDPI, vol. 7(4), pages 1-28, December.
    8. Karan Bhuwalka & Eunseo Choi & Elizabeth A. Moore & Richard Roth & Randolph E. Kirchain & Elsa A. Olivetti, 2023. "A hierarchical Bayesian regression model that reduces uncertainty in material demand predictions," Journal of Industrial Ecology, Yale University, vol. 27(1), pages 43-55, February.
    9. Blomberg, Jerry & Söderholm, Patrik, 2009. "The economics of secondary aluminium supply: An econometric analysis based on European data," Resources, Conservation & Recycling, Elsevier, vol. 53(8), pages 455-463.
    10. Sourabh, Shalinee & Pavithran, Sagar & Menon, Balagopal G. & Mahanty, Biswajit, 2023. "Econometric modeling for the influence of economic variables on secondary copper production in India," Resources Policy, Elsevier, vol. 86(PB).
    11. Florian Fizaine, 2019. "The Economics of Recycling Rate: new insights from a Waste Electrical and Electronic Equipment," Policy Papers 2019.01, FAERE - French Association of Environmental and Resource Economists.
    12. Luke Cullen & Andrea Marinoni & Jonathan Cullen, 2024. "Machine learning for gap‐filling in greenhouse gas emissions databases," Journal of Industrial Ecology, Yale University, vol. 28(4), pages 636-647, August.
    13. Pothen, Frank, 2014. "Dynamic market power in an exhaustible resource industry: The case of rare earth elements," ZEW Discussion Papers 14-005, ZEW - Leibniz Centre for European Economic Research.
    14. Aramendia, Emmanuel & Brockway, Paul E. & Taylor, Peter G. & Norman, Jonathan B., 2024. "Exploring the effects of mineral depletion on renewable energy technologies net energy returns," Energy, Elsevier, vol. 290(C).
    15. Patrik Söderholm & Tomas Ekvall, 2020. "Metal markets and recycling policies: impacts and challenges," Mineral Economics, Springer;Raw Materials Group (RMG);Luleå University of Technology, vol. 33(1), pages 257-272, July.
    16. Fizaine, Florian, 2020. "The economics of recycling rate: New insights from waste electrical and electronic equipment," Resources Policy, Elsevier, vol. 67(C).
    17. Olusegun Peter Olaoye & Aderemi Timothy Ayomitunde & Nwagwu Chinedu John & Yvonne Jude-Okeke & Azuh Dominic Ezinwa, 2020. "Energy Consumption and Foreign Direct Investment Inflows in Nigeria: An Empirical Perspective," International Journal of Energy Economics and Policy, Econjournals, vol. 10(2), pages 491-496.
    18. Hu, Xueyue & Wang, Chunying & Elshkaki, Ayman, 2024. "Material-energy Nexus: A systematic literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 192(C).
    19. Ersin Yavuz & Emre Kilic & Abdullah Emre Caglar, 2024. "A new hypothesis for the unemployment-environment dilemma: is the environmental Phillips curve valid in the framework of load capacity factor in Turkiye?," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 26(11), pages 29475-29492, November.
    20. Sinha, Avik & Shahbaz, Muhammad, 2018. "Estimation of Environmental Kuznets Curve for CO2 emission: Role of renewable energy generation in India," Renewable Energy, Elsevier, vol. 119(C), pages 703-711.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:inecol:v:28:y:2024:i:4:p:709-726. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=1088-1980 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.