IDEAS home Printed from https://ideas.repec.org/a/bla/inecol/v25y2021i2p359-376.html
   My bibliography  Save this article

Decarbonizing the cementitious materials cycle: A whole‐systems review of measures to decarbonize the cement supply chain in the UK and European contexts

Author

Listed:
  • Sarah Pamenter
  • Rupert J. Myers

Abstract

This paper presents a semi‐quantitative review of measures to achieve net‐zero greenhouse gas emissions (“decarbonization”) in the cementitious materials (CMs) cycle, that is, activities directly related to cement spanning extraction through to end of life. It focuses on the United Kingdom and Europe in order to relate these measures, comprising emissions, energy, and material efficiency, to the policy landscape. We summarize our findings in an annotated CMs cycle, produced by reconciling the diverse yet relatively underdeveloped literature on the topic, to quantify decarbonization potentials of the various measures in a systematic manner. We find that decarbonization measures with significant potential exist along the entire CMs cycle, although upstream (of use), energy, and emission efficiency measures are better quantified than downstream (of use) and material efficiency measures. Notably, the decarbonization potentials of recycling technologies and the ways in which technological advancements may transform the CMs cycle and thus the stocks, flows, and processing of materials, as well as effectiveness of decarbonization measures, are poorly understood. Therefore, this paper provides a basis to systematically understand the effects of emissions, energy, and material efficiency measures on decarbonization of the CMs cycle and, in this context, the interplay between technology, economic actors, and policy. This article met the requirements for a gold–gold JIE data openness badge described at http://jie.click/badges.

Suggested Citation

  • Sarah Pamenter & Rupert J. Myers, 2021. "Decarbonizing the cementitious materials cycle: A whole‐systems review of measures to decarbonize the cement supply chain in the UK and European contexts," Journal of Industrial Ecology, Yale University, vol. 25(2), pages 359-376, April.
  • Handle: RePEc:bla:inecol:v:25:y:2021:i:2:p:359-376
    DOI: 10.1111/jiec.13105
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/jiec.13105
    Download Restriction: no

    File URL: https://libkey.io/10.1111/jiec.13105?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Lechtenböhmer, Stefan & Nilsson, Lars J. & Åhman, Max & Schneider, Clemens, 2016. "Decarbonising the energy intensive basic materials industry through electrification – Implications for future EU electricity demand," Energy, Elsevier, vol. 115(P3), pages 1623-1631.
    2. Céline CARRERE & Jaime MELO DE, 2009. "Non-Tariff Measures: What do we Know, What Should be Done?," Working Papers 200933, CERDI.
    3. Verena Göswein & Jonathan Krones & Giulia Celentano & John E. Fernández & Guillaume Habert, 2018. "Embodied GHGs in a Fast Growing City: Looking at the Evolution of a Dwelling Stock using Structural Element Breakdown and Policy Scenarios," Journal of Industrial Ecology, Yale University, vol. 22(6), pages 1339-1351, December.
    4. Zhi Cao & Rupert J. Myers & Richard C. Lupton & Huabo Duan & Romain Sacchi & Nan Zhou & T. Reed Miller & Jonathan M. Cullen & Quansheng Ge & Gang Liu, 2020. "The sponge effect and carbon emission mitigation potentials of the global cement cycle," Nature Communications, Nature, vol. 11(1), pages 1-9, December.
    5. Nancy M. P. Bocken & Elsa A. Olivetti & Jonathan M. Cullen & José Potting & Reid Lifset, 2017. "Taking the Circularity to the Next Level: A Special Issue on the Circular Economy," Journal of Industrial Ecology, Yale University, vol. 21(3), pages 476-482, June.
    6. Niko Heeren & Stefanie Hellweg, 2019. "Tracking Construction Material over Space and Time: Prospective and Geo‐referenced Modeling of Building Stocks and Construction Material Flows," Journal of Industrial Ecology, Yale University, vol. 23(1), pages 253-267, February.
    7. Popp, David & Newell, Richard G. & Jaffe, Adam B., 2010. "Energy, the Environment, and Technological Change," Handbook of the Economics of Innovation, in: Bronwyn H. Hall & Nathan Rosenberg (ed.), Handbook of the Economics of Innovation, edition 1, volume 2, chapter 0, pages 873-937, Elsevier.
    8. Viktor Wang, 2009. "Effective Teaching with Technology in Adult Education," International Journal of Web-Based Learning and Teaching Technologies (IJWLTT), IGI Global, vol. 4(4), pages 17-31, October.
    9. Daniel da Costa Reis & Yazmin Mack‐Vergara & Vanderley Moacyr John, 2019. "Material flow analysis and material use efficiency of Brazil's mortar and concrete supply chain," Journal of Industrial Ecology, Yale University, vol. 23(6), pages 1396-1409, December.
    10. Jonathan M. Cullen, 2017. "Circular Economy: Theoretical Benchmark or Perpetual Motion Machine?," Journal of Industrial Ecology, Yale University, vol. 21(3), pages 483-486, June.
    11. Harn Wei Kua & Marcus Maghimai, 2017. "Steel-versus-Concrete Debate Revisited: Global Warming Potential and Embodied Energy Analyses based on Attributional and Consequential Life Cycle Perspectives," Journal of Industrial Ecology, Yale University, vol. 21(1), pages 82-100, February.
    12. Leung, Dennis Y.C. & Caramanna, Giorgio & Maroto-Valer, M. Mercedes, 2014. "An overview of current status of carbon dioxide capture and storage technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 426-443.
    13. Galina Churkina & Alan Organschi & Christopher P. O. Reyer & Andrew Ruff & Kira Vinke & Zhu Liu & Barbara K. Reck & T. E. Graedel & Hans Joachim Schellnhuber, 2020. "Buildings as a global carbon sink," Nature Sustainability, Nature, vol. 3(4), pages 269-276, April.
    14. T. E. Graedel & Julian Allwood & Jean‐Pierre Birat & Matthias Buchert & Christian Hagelüken & Barbara K. Reck & Scott F. Sibley & Guido Sonnemann, 2011. "What Do We Know About Metal Recycling Rates?," Journal of Industrial Ecology, Yale University, vol. 15(3), pages 355-366, June.
    15. Davis, Steven J & Lewis, Nathan S. & Shaner, Matthew & Aggarwal, Sonia & Arent, Doug & Azevedo, Inês & Benson, Sally & Bradley, Thomas & Brouwer, Jack & Chiang, Yet-Ming & Clack, Christopher T.M. & Co, 2018. "Net-Zero Emissions Energy Systems," Institute of Transportation Studies, Working Paper Series qt7qv6q35r, Institute of Transportation Studies, UC Davis.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Eric Masanet & Niko Heeren & Shigemi Kagawa & Jonathan Cullen & Reid Lifset & Richard Wood, 2021. "Material efficiency for climate change mitigation," Journal of Industrial Ecology, Yale University, vol. 25(2), pages 254-259, April.
    2. Takuma Watari & Zhi Cao & Sho Hata & Keisuke Nansai, 2022. "Efficient use of cement and concrete to reduce reliance on supply-side technologies for net-zero emissions," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    3. Izhar Hussain Shah & Sabbie A. Miller & Daqian Jiang & Rupert J. Myers, 2022. "Cement substitution with secondary materials can reduce annual global CO2 emissions by up to 1.3 gigatons," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    4. Andrew Chapman & Hidemichi Fujii, 2022. "The Potential Role of Flying Vehicles in Progressing the Energy Transition," Energies, MDPI, vol. 15(19), pages 1-11, October.
    5. Jagriti Singh & Krishan Kumar Pandey & Anil Kumar & Farheen Naz & Sunil Luthra, 2023. "Drivers, barriers and practices of net zero economy: An exploratory knowledge based supply chain multi-stakeholder perspective framework," Operations Management Research, Springer, vol. 16(3), pages 1059-1090, September.
    6. Daniel Costa Reis & Marco Quattrone & Jhonathan F. T. Souza & Katia R. G. Punhagui & Sergio A. Pacca & Vanderley M. John, 2021. "Potential CO2 reduction and uptake due to industrialization and efficient cement use in Brazil by 2050," Journal of Industrial Ecology, Yale University, vol. 25(2), pages 344-358, April.
    7. Qi Zhang & Ting Xiang & Wei Zhang & Heming Wang & Jing An & Xiuping Li & Bing Xue, 2022. "Co‐benefits analysis of industrial symbiosis in China's key industries: Case of steel, cement, and power industries," Journal of Industrial Ecology, Yale University, vol. 26(5), pages 1714-1727, October.
    8. Numa Bertola & Célia Küpfer & Edgar Kälin & Eugen Brühwiler, 2021. "Assessment of the Environmental Impacts of Bridge Designs Involving UHPFRC," Sustainability, MDPI, vol. 13(22), pages 1-19, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cris Garcia-Saravia Ortiz-de-Montellano & Yvonne Meer, 2022. "A Theoretical Framework for Circular Processes and Circular Impacts Through a Comprehensive Review of Indicators," Global Journal of Flexible Systems Management, Springer;Global Institute of Flexible Systems Management, vol. 23(2), pages 291-314, June.
    2. Takuma Watari & Zhi Cao & Sho Hata & Keisuke Nansai, 2022. "Efficient use of cement and concrete to reduce reliance on supply-side technologies for net-zero emissions," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    3. Izhar Hussain Shah & Sabbie A. Miller & Daqian Jiang & Rupert J. Myers, 2022. "Cement substitution with secondary materials can reduce annual global CO2 emissions by up to 1.3 gigatons," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    4. Xiaoyang Zhong & Mingming Hu & Sebastiaan Deetman & Bernhard Steubing & Hai Xiang Lin & Glenn Aguilar Hernandez & Carina Harpprecht & Chunbo Zhang & Arnold Tukker & Paul Behrens, 2021. "Global greenhouse gas emissions from residential and commercial building materials and mitigation strategies to 2060," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
    5. Matilda Axelson & Sebastian Oberthür & Lars J. Nilsson, 2021. "Emission reduction strategies in the EU steel industry: Implications for business model innovation," Journal of Industrial Ecology, Yale University, vol. 25(2), pages 390-402, April.
    6. Jan Streeck & Quirin Dammerer & Dominik Wiedenhofer & Fridolin Krausmann, 2021. "The role of socio‐economic material stocks for natural resource use in the United States of America from 1870 to 2100," Journal of Industrial Ecology, Yale University, vol. 25(6), pages 1486-1502, December.
    7. Michael Saidani & Alissa Kendall & Bernard Yannou & Yann Leroy & François Cluzel, 2019. "Closing the loop on platinum from catalytic converters: Contributions from material flow analysis and circularity indicators," Post-Print hal-02094798, HAL.
    8. Josefine A. Olsson & Sabbie A. Miller & Mark G. Alexander, 2023. "Near-term pathways for decarbonizing global concrete production," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    9. Tobias Wendler, 2019. "About the Relationship Between Green Technology and Material Usage," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 74(3), pages 1383-1423, November.
    10. Pérez-Sánchez, Laura À. & Velasco-Fernández, Raúl & Giampietro, Mario, 2022. "Factors and actions for the sustainability of the residential sector. The nexus of energy, materials, space, and time use," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    11. Elshkaki, Ayman & Graedel, T.E., 2015. "Solar cell metals and their hosts: A tale of oversupply and undersupply," Applied Energy, Elsevier, vol. 158(C), pages 167-177.
    12. Fernanda Cortegoso Oliveira Frascareli & Marcelo Furlan & Enzo Barberio Mariano & Daniel Jugend, 2024. "A macro-level circular economy index: theoretical proposal and application in European Union countries," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 26(7), pages 18297-18331, July.
    13. Rosa, Lorenzo & Sanchez, Daniel L. & Realmonte, Giulia & Baldocchi, Dennis & D'Odorico, Paolo, 2021. "The water footprint of carbon capture and storage technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    14. Erik G. Hansen & Ferdinand Revellio, 2020. "Circular value creation architectures: Make, ally, buy, or laissez‐faire," Journal of Industrial Ecology, Yale University, vol. 24(6), pages 1250-1273, December.
    15. Andersson, Magnus & Ljunggren Söderman, Maria & Sandén, Björn A., 2019. "Challenges of recycling multiple scarce metals: The case of Swedish ELV and WEEE recycling," Resources Policy, Elsevier, vol. 63(C), pages 1-1.
    16. Galán-Martín, Ángel & Contreras, María del Mar & Romero, Inmaculada & Ruiz, Encarnación & Bueno-Rodríguez, Salvador & Eliche-Quesada, Dolores & Castro-Galiano, Eulogio, 2022. "The potential role of olive groves to deliver carbon dioxide removal in a carbon-neutral Europe: Opportunities and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 165(C).
    17. Quarton, Christopher J. & Samsatli, Sheila, 2020. "The value of hydrogen and carbon capture, storage and utilisation in decarbonising energy: Insights from integrated value chain optimisation," Applied Energy, Elsevier, vol. 257(C).
    18. Karlsson, Ida & Rootzén, Johan & Johnsson, Filip, 2020. "Reaching net-zero carbon emissions in construction supply chains – Analysis of a Swedish road construction project," Renewable and Sustainable Energy Reviews, Elsevier, vol. 120(C).
    19. Rosa, Lorenzo & Mazzotti, Marco, 2022. "Potential for hydrogen production from sustainable biomass with carbon capture and storage," Renewable and Sustainable Energy Reviews, Elsevier, vol. 157(C).
    20. Stefan Pauliuk & Niko Heeren, 2020. "ODYM—An open software framework for studying dynamic material systems: Principles, implementation, and data structures," Journal of Industrial Ecology, Yale University, vol. 24(3), pages 446-458, June.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:inecol:v:25:y:2021:i:2:p:359-376. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=1088-1980 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.