IDEAS home Printed from https://ideas.repec.org/a/bla/ecorec/v90y2014i288p98-118.html
   My bibliography  Save this article

Do SVAR Models Justify Discarding the Technology-Shock-Driven Real Business Cycle Hypothesis?

Author

Listed:
  • Hyeon-Seung Huh
  • David Kim

Abstract

type="main" xml:id="ecor12096-abs-0001"> This study investigates the validity of technology shocks as a driving force of US business cycle fluctuations. Using three well-known structural vector autoregression (SVAR) models, we analyse how structural shocks are associated with the variations of output and hours worked at business cycle frequencies. Empirical results reveal that technology shocks remain an important source of cyclical movements in output. Furthermore, a positive technology shock does not lead to a decline in hours worked, in contrast to previous studies. Our SVAR-based evidence does not support discarding a technology-shock-driven business cycle theory.

Suggested Citation

  • Hyeon-Seung Huh & David Kim, 2014. "Do SVAR Models Justify Discarding the Technology-Shock-Driven Real Business Cycle Hypothesis?," The Economic Record, The Economic Society of Australia, vol. 90(288), pages 98-118, March.
  • Handle: RePEc:bla:ecorec:v:90:y:2014:i:288:p:98-118
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1111/ecor.2014.90.issue-288
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Gonzalo, Jesus & Ng, Serena, 2001. "A systematic framework for analyzing the dynamic effects of permanent and transitory shocks," Journal of Economic Dynamics and Control, Elsevier, vol. 25(10), pages 1527-1546, October.
    2. Cogley, Timothy & Nason, James M, 1995. "Output Dynamics in Real-Business-Cycle Models," American Economic Review, American Economic Association, vol. 85(3), pages 492-511, June.
    3. Lawrence J. Christiano & Martin Eichenbaum & Robert Vigfusson, 2004. "The Response of Hours to a Technology Shock: Evidence Based on Direct Measures of Technology," Journal of the European Economic Association, MIT Press, vol. 2(2-3), pages 381-395, 04/05.
    4. V. V. Chari & Patrick J. Kehoe & Ellen R. McGrattan, 2009. "New Keynesian Models: Not Yet Useful for Policy Analysis," American Economic Journal: Macroeconomics, American Economic Association, vol. 1(1), pages 242-266, January.
    5. Jonas D. M. Fisher, 2006. "The Dynamic Effects of Neutral and Investment-Specific Technology Shocks," Journal of Political Economy, University of Chicago Press, vol. 114(3), pages 413-451, June.
    6. Dupasquier, Chantal & Guay, Alain & St-Amant, Pierre, 1999. "A Survey of Alternative Methodologies for Estimating Potential Output and the Output Gap," Journal of Macroeconomics, Elsevier, vol. 21(3), pages 577-595, July.
    7. Pagan, A.R. & Pesaran, M. Hashem, 2008. "Econometric analysis of structural systems with permanent and transitory shocks," Journal of Economic Dynamics and Control, Elsevier, vol. 32(10), pages 3376-3395, October.
    8. Francis, Neville & Ramey, Valerie A., 2005. "Is the technology-driven real business cycle hypothesis dead? Shocks and aggregate fluctuations revisited," Journal of Monetary Economics, Elsevier, vol. 52(8), pages 1379-1399, November.
    9. Matthew D. Shapiro & Mark W. Watson, 1988. "Sources of Business Cycle Fluctuations," NBER Chapters, in: NBER Macroeconomics Annual 1988, Volume 3, pages 111-156, National Bureau of Economic Research, Inc.
    10. Lawrence J. Christiano & Martin Eichenbaum & Robert Vigfusson, 2003. "What Happens After a Technology Shock?," NBER Working Papers 9819, National Bureau of Economic Research, Inc.
    11. Galí, Jordi & Rabanal, Pau, 2004. "Technology Shocks and Aggregate Fluctuations: How Well Does the RBC Model Fit Post-War US Data?," CEPR Discussion Papers 4522, C.E.P.R. Discussion Papers.
    12. Chari, V.V. & Kehoe, Patrick J. & McGrattan, Ellen R., 2008. "Are structural VARs with long-run restrictions useful in developing business cycle theory?," Journal of Monetary Economics, Elsevier, vol. 55(8), pages 1337-1352, November.
    13. Ufuk Demiroglu & Matthew Salomon, 2002. "Using Time-Series Models to Project Output Over the Medium Term: Technical Paper 2002-1," Working Papers 13983, Congressional Budget Office.
    14. John H. Cochrane, 1994. "Permanent and Transitory Components of GNP and Stock Prices," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 109(1), pages 241-265.
    15. Beveridge, Stephen & Nelson, Charles R., 1981. "A new approach to decomposition of economic time series into permanent and transitory components with particular attention to measurement of the `business cycle'," Journal of Monetary Economics, Elsevier, vol. 7(2), pages 151-174.
    16. Fisher, Lance A. & Huh, Hyeon-Seung & Summers, Peter M., 2000. "Structural Identification of Permanent Shocks in VEC Models: A Generalization," Journal of Macroeconomics, Elsevier, vol. 22(1), pages 53-68, January.
    17. Pengfei Wang & Yi Wen, 2011. "Understanding the Effects of Technology Shocks," Review of Economic Dynamics, Elsevier for the Society for Economic Dynamics, vol. 14(4), pages 705-724, October.
    18. Fama, Eugene F., 1992. "Transitory variation in investment and output," Journal of Monetary Economics, Elsevier, vol. 30(3), pages 467-480, December.
    19. Chantal Dupasquier & Alain Guay & Pierre St-Amant, 1997. "A Comparison of Alternative Methodologies for Estimating Potential Output and the Output Gap," Staff Working Papers 97-5, Bank of Canada.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chari, V.V. & Kehoe, Patrick J. & McGrattan, Ellen R., 2008. "Are structural VARs with long-run restrictions useful in developing business cycle theory?," Journal of Monetary Economics, Elsevier, vol. 55(8), pages 1337-1352, November.
    2. Gubler, Matthias & Hertweck, Matthias S., 2013. "Commodity price shocks and the business cycle: Structural evidence for the U.S," Journal of International Money and Finance, Elsevier, vol. 37(C), pages 324-352.
    3. Malley, Jim & Woitek, Ulrich, 2010. "Technology shocks and aggregate fluctuations in an estimated hybrid RBC model," Journal of Economic Dynamics and Control, Elsevier, vol. 34(7), pages 1214-1232, July.
    4. Elmar Mertens, 2005. "Puzzling Comovements between Output and Interest Rates? Multiple Shocks are the Answer," Working Papers 05.05, Swiss National Bank, Study Center Gerzensee.
    5. Neville Francis & Valerie A. Ramey, 2009. "Measures of per Capita Hours and Their Implications for the Technology‐Hours Debate," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 41(6), pages 1071-1097, September.
    6. Dedola, Luca & Neri, Stefano, 2007. "What does a technology shock do? A VAR analysis with model-based sign restrictions," Journal of Monetary Economics, Elsevier, vol. 54(2), pages 512-549, March.
    7. Sean Holly & Ivan Petrella, 2008. "Factor demand linkages and the business cycle: interpreting aggregate fluctuations as sectoral fluctuations," CDMA Conference Paper Series 0809, Centre for Dynamic Macroeconomic Analysis.
    8. Mandelman, Federico S. & Zanetti, Francesco, 2014. "Flexible prices, labor market frictions and the response of employment to technology shocks," Labour Economics, Elsevier, vol. 26(C), pages 94-102.
    9. Laura Bisio & Andrea Faccini, 2010. "Does Cointegration Matter? An Analysis in a RBC Perspective," Working Papers in Public Economics 133, University of Rome La Sapienza, Department of Economics and Law.
    10. Andrei Polbin & Sergey Drobyshevsky, 2014. "Developing a Dynamic Stochastic Model of General Equilibrium for the Russian Economy," Research Paper Series, Gaidar Institute for Economic Policy, issue 166P, pages 156-156.
    11. Andrés González & Sergio Ocampo & Diego Rodríguez & Norberto Rodríguez, 2012. "Asimetrías del empleo y el producto, una aproximación de equilibrio general," Revista ESPE - Ensayos Sobre Política Económica, Banco de la República, vol. 30(68), pages 218-272, June.
    12. Justiniano, Alejandro & Primiceri, Giorgio E. & Tambalotti, Andrea, 2010. "Investment shocks and business cycles," Journal of Monetary Economics, Elsevier, vol. 57(2), pages 132-145, March.
    13. David Altig & Lawrence Christiano & Martin Eichenbaum & Jesper Linde, 2011. "Firm-Specific Capital, Nominal Rigidities and the Business Cycle," Review of Economic Dynamics, Elsevier for the Society for Economic Dynamics, vol. 14(2), pages 225-247, April.
    14. Rujin, Svetlana, 2024. "Labor market institutions and technology-induced labor adjustment along the extensive and intensive margins," Journal of Macroeconomics, Elsevier, vol. 79(C).
    15. Miles S. Kimball & John G. Fernald & Susanto Basu, 2006. "Are Technology Improvements Contractionary?," American Economic Review, American Economic Association, vol. 96(5), pages 1418-1448, December.
    16. Ramey, V.A., 2016. "Macroeconomic Shocks and Their Propagation," Handbook of Macroeconomics, in: J. B. Taylor & Harald Uhlig (ed.), Handbook of Macroeconomics, edition 1, volume 2, chapter 0, pages 71-162, Elsevier.
    17. Artuç, Erhan & Pourpourides, Panayiotis M., 2014. "R&D and aggregate fluctuations," Journal of Economic Dynamics and Control, Elsevier, vol. 47(C), pages 54-71.
    18. Danthine, Jean-Pierre & Kurmann, André, 2010. "The business cycle implications of reciprocity in labor relations," Journal of Monetary Economics, Elsevier, vol. 57(7), pages 837-850, October.
    19. Louis Phaneuf & Nooman Rebei, 2008. "Production Stages and the Transmission of Technological Progress," Cahiers de recherche 0802, CIRPEE.
    20. Dufourt, Frederic, 2005. "Demand and productivity components of business cycles: Estimates and implications," Journal of Monetary Economics, Elsevier, vol. 52(6), pages 1089-1105, September.

    More about this item

    JEL classification:

    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
    • E32 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Business Fluctuations; Cycles

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:ecorec:v:90:y:2014:i:288:p:98-118. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/esausea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.