IDEAS home Printed from https://ideas.repec.org/a/bla/canjag/v72y2024i3p285-307.html
   My bibliography  Save this article

Bioenergy feedstock supply from wheat straw: A farm level model incorporating trade‐offs in crop choices, disease risk, and soil fertility

Author

Listed:
  • Curtis J. McKnight
  • Grant Hauer
  • Marty Luckert
  • Feng Qiu

Abstract

Second‐generation biofuel (e.g., ethanol, renewable diesel) can be made from crop residues. However, the availability of residues for biofuel production is uncertain, because farmers have the option to grow different crops and use the residues for alternative purposes, such as livestock bedding and feed, or leave them in the field to improve soil quality. Taking Canadian wheat straw supply as an example, we develop a dynamic programming model to investigate a farmer's wheat straw supply decision in response to different wheat straw and grain prices. Our model considers crop choices between wheat and canola in the context of disease risk, the trade‐off between the immediate payoffs a farmer may receive from bailing and selling wheat straw, and the long‐term adverse effects that removing wheat straw from the soil surface may have on wheat and canola yields. The results from this study provide insights into how farm‐level supply decisions, in response to wheat straw price changes, affect soil quality dynamics and scale up to regional wheat straw supply for biofuel production. This information also has implications for land use change and the sustainability of feedstock supply for biofuels. Les biocarburants de deuxième génération (par exemple, éthanol, diesel renouvelable) peuvent être fabriqués à partir de résidus de récolte. Cependant, la disponibilité des résidus pour la production de biocarburants est incertaine, car les agriculteurs ont la possibilité de cultiver différentes cultures et d'utiliser les résidus à d'autres fins, comme la litière et l'alimentation du bétail, ou de les laisser dans les champs pour améliorer la qualité du sol. En prenant comme exemple l'approvisionnement en paille de blé au Canada, nous développons un modèle de programmation dynamique pour étudier la décision d'un agriculteur en matière d'approvisionnement en paille de blé en réponse aux différents prix de la paille de blé et des céréales. Notre modèle considère les choix de cultures entre le blé et le canola dans le contexte du risque de maladie, et le compromis entre les bénéfices immédiats qu'un agriculteur peut recevoir en récoltant et en vendant la paille de blé, et les effets négatifs à long terme sur les rendements du blé et du canola associé au retrait de la paille de blé du sol. Les résultats de cette étude donnent un aperçu de la façon dont les décisions d'approvisionnement au niveau des exploitations agricoles, en réponse aux changements de prix de la paille de blé, affectent la dynamique de la qualité des sols et s'étendent à l'approvisionnement régional en paille de blé pour la production de biocarburants. Ces informations ont également des implications sur le changement d'affectation des terres et sur la durabilité de l'approvisionnement en matières premières pour les biocarburants.

Suggested Citation

  • Curtis J. McKnight & Grant Hauer & Marty Luckert & Feng Qiu, 2024. "Bioenergy feedstock supply from wheat straw: A farm level model incorporating trade‐offs in crop choices, disease risk, and soil fertility," Canadian Journal of Agricultural Economics/Revue canadienne d'agroeconomie, Canadian Agricultural Economics Society/Societe canadienne d'agroeconomie, vol. 72(3), pages 285-307, September.
  • Handle: RePEc:bla:canjag:v:72:y:2024:i:3:p:285-307
    DOI: 10.1111/cjag.12350
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/cjag.12350
    Download Restriction: no

    File URL: https://libkey.io/10.1111/cjag.12350?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. David A. Hennessy, 2009. "Crop Yield Skewness Under Law of the Minimum Technology," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 91(1), pages 197-208.
    2. Shiller, Robert J. & Perron, Pierre, 1985. "Testing the random walk hypothesis : Power versus frequency of observation," Economics Letters, Elsevier, vol. 18(4), pages 381-386.
    3. Gal Hochman & David Zilberman, 2018. "Corn Ethanol and U.S. Biofuel Policy 10 Years Later: A Quantitative Assessment," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 100(2), pages 570-584.
    4. Xiaoguang Chen & Madhu Khanna, 2013. "Food vs. Fuel: The Effect of Biofuel Policies," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 95(2), pages 289-295.
    5. Richard Bellman, 1954. "On some applications of the theory of dynamic programming to logistics," Naval Research Logistics Quarterly, John Wiley & Sons, vol. 1(2), pages 141-153, June.
    6. Kaparaju, Prasad & Serrano, María & Angelidaki, Irini, 2010. "Optimization of biogas production from wheat straw stillage in UASB reactor," Applied Energy, Elsevier, vol. 87(12), pages 3779-3783, December.
    7. Lynes, Melissa K. & Bergtold, Jason S. & Williams, Jeffery R. & Fewell, Jason E., 2016. "Willingness of Kansas farm managers to produce alternative cellulosic biofuel feedstocks: An analysis of adoption and initial acreage allocation," Energy Economics, Elsevier, vol. 59(C), pages 336-348.
    8. Searchinger, Timothy & Heimlich, Ralph & Houghton, R. A. & Dong, Fengxia & Elobeid, Amani & Fabiosa, Jacinto F. & Tokgoz, Simla & Hayes, Dermot J. & Yu, Hun-Hsiang, 2008. "Use of U.S. Croplands for Biofuels Increases Greenhouse Gases Through Emissions from Land-Use Change," Staff General Research Papers Archive 12881, Iowa State University, Department of Economics.
    9. Grant Hauer & M.K. (Marty) Luckert & Denys Yemshanov & Jim Unterschultz, 2017. "A Spatial Real Options Approach for Modeling Land Use Change: Assessing the Potential for Poplar Energy Plantations in Alberta," Canadian Journal of Agricultural Economics/Revue canadienne d'agroeconomie, Canadian Agricultural Economics Society/Societe canadienne d'agroeconomie, vol. 65(2), pages 271-292, June.
    10. Richard Bellman, 1954. "Some Applications of the Theory of Dynamic Programming---A Review," Operations Research, INFORMS, vol. 2(3), pages 275-288, August.
    11. Zuo, Alec & Hou, Lingling & Huang, Zeying, 2020. "How does farmers' current usage of crop straws influence the willingness-to-accept price to sell?," Energy Economics, Elsevier, vol. 86(C).
    12. Timothy D. Searchinger & Stefan Wirsenius & Tim Beringer & Patrice Dumas, 2018. "Assessing the efficiency of changes in land use for mitigating climate change," Nature, Nature, vol. 564(7735), pages 249-253, December.
    13. Gallagher, Paul W. & Dikeman, Mark & Fritz, John & Wailes, Eric & Gauthier, Wayne & Shapouri, Hosein, 2003. "Supply and Social Cost Estimates for Biomass from Crop Residues in the United States," ISU General Staff Papers 200304010800001493, Iowa State University, Department of Economics.
    14. Barrett E. Kirwan, 2009. "The Incidence of U.S. Agricultural Subsidies on Farmland Rental Rates," Journal of Political Economy, University of Chicago Press, vol. 117(1), pages 138-164, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Derek Brewin & Ryan Cardwell & Alan P. Ker, 2024. "Introduction to the special issue in honor of the late Dr. James Rude," Canadian Journal of Agricultural Economics/Revue canadienne d'agroeconomie, Canadian Agricultural Economics Society/Societe canadienne d'agroeconomie, vol. 72(3), pages 209-211, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gérard, Maxence & Jayet, Pierre-Alain, 2023. "European farmers’ response to crop residue prices and implications for bioenergy policies," Energy Policy, Elsevier, vol. 177(C).
    2. Thomas L. Magnanti, 2021. "Optimization: From Its Inception," Management Science, INFORMS, vol. 67(9), pages 5349-5363, September.
    3. Xiaoyue Li & John M. Mulvey, 2023. "Optimal Portfolio Execution in a Regime-switching Market with Non-linear Impact Costs: Combining Dynamic Program and Neural Network," Papers 2306.08809, arXiv.org.
    4. Mahmoud Mahfouz & Angelos Filos & Cyrine Chtourou & Joshua Lockhart & Samuel Assefa & Manuela Veloso & Danilo Mandic & Tucker Balch, 2019. "On the Importance of Opponent Modeling in Auction Markets," Papers 1911.12816, arXiv.org.
    5. Gal Hochman & Chrysostomos Tabakis, 2020. "Biofuels and Their Potential in South Korea," Sustainability, MDPI, vol. 12(17), pages 1-17, September.
    6. G., Mauricio Contreras & Peña, Juan Pablo, 2019. "The quantum dark side of the optimal control theory," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 515(C), pages 450-473.
    7. Mizutani, Daijiro & Nakazato, Yuto & Ikushima, Rie & Satsukawa, Koki & Kawasaki, Yosuke & Kuwahara, Masao, 2024. "Optimal intervention policy of emergency storage batteries for expressway transportation systems considering deterioration risk during lead time of replacement," Reliability Engineering and System Safety, Elsevier, vol. 242(C).
    8. Yann Disser & John Fearnley & Martin Gairing & Oliver Göbel & Max Klimm & Daniel Schmand & Alexander Skopalik & Andreas Tönnis, 2020. "Hiring Secretaries over Time: The Benefit of Concurrent Employment," Mathematics of Operations Research, INFORMS, vol. 45(1), pages 323-352, February.
    9. Sean Williams & Michael Short & Tracey Crosbie & Maryam Shadman-Pajouh, 2020. "A Decentralized Informatics, Optimization, and Control Framework for Evolving Demand Response Services," Energies, MDPI, vol. 13(16), pages 1-30, August.
    10. Boute, Robert N. & Gijsbrechts, Joren & van Jaarsveld, Willem & Vanvuchelen, Nathalie, 2022. "Deep reinforcement learning for inventory control: A roadmap," European Journal of Operational Research, Elsevier, vol. 298(2), pages 401-412.
    11. Dawei Chen & Fangxu Mo & Ye Chen & Jun Zhang & Xinyu You, 2022. "Optimization of Ramp Locations along Freeways: A Dynamic Programming Approach," Sustainability, MDPI, vol. 14(15), pages 1-13, August.
    12. Gunaseelan Mani & Arul Joseph Gnanaprakasam & Liliana Guran & Reny George & Zoran D. Mitrović, 2023. "Some Results in Fuzzy b -Metric Space with b -Triangular Property and Applications to Fredholm Integral Equations and Dynamic Programming," Mathematics, MDPI, vol. 11(19), pages 1-17, September.
    13. Dupoux, Marion, 2019. "The land use change time-accounting failure," Ecological Economics, Elsevier, vol. 164(C), pages 1-1.
    14. Seixas, Mário & Barbosa, António, 2019. "Optimal Value-at-Risk Disclosure," MPRA Paper 97526, University Library of Munich, Germany.
    15. Fabio G. Santeramo & Monica Delsignore & Enrica Imbert & Mariarosaria Lombardi, 2023. "The Future of the EU Bioenergy Sector: Economic, Environmental, Social, and Legislative Challenges," International Review of Environmental and Resource Economics, now publishers, vol. 17(1), pages 1-1–52, April.
    16. Harrold, Daniel J.B. & Cao, Jun & Fan, Zhong, 2022. "Data-driven battery operation for energy arbitrage using rainbow deep reinforcement learning," Energy, Elsevier, vol. 238(PC).
    17. Vorotnikova, Ekaterina & Seale, James L, 2014. "The Effect of Energy Policy Act (EPA-2005) on Agricultural Land Allocation Dynamics in the United States," 2014 Annual Meeting, February 1-4, 2014, Dallas, Texas 162553, Southern Agricultural Economics Association.
    18. Deepayan Debnath & Madhu Khanna & Deepak Rajagopal & David Zilberman, 2019. "The Future of Biofuels in an Electrifying Global Transportation Sector: Imperative, Prospects and Challenges," Applied Economic Perspectives and Policy, John Wiley & Sons, vol. 41(4), pages 563-582, December.
    19. Vanvuchelen, Nathalie & De Boeck, Kim & Boute, Robert N., 2024. "Cluster-based lateral transshipments for the Zambian health supply chain," European Journal of Operational Research, Elsevier, vol. 313(1), pages 373-386.
    20. Bartłomiej Kocot & Paweł Czarnul & Jerzy Proficz, 2023. "Energy-Aware Scheduling for High-Performance Computing Systems: A Survey," Energies, MDPI, vol. 16(2), pages 1-28, January.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:canjag:v:72:y:2024:i:3:p:285-307. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/caefmea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.