IDEAS home Printed from https://ideas.repec.org/a/bla/bstrat/v30y2021i1p478-488.html
   My bibliography  Save this article

Climate impacts on geographical changes in the energy industry

Author

Listed:
  • Solji Nam
  • Jungwoo Shin
  • Jaena Ryu
  • Hanee Ryu

Abstract

Owing to global warming, ice in the Arctic Ocean has shrunk by 2.7% every 10 years since 1978, resulting in tremendous damage. This study uses the Cobb–Douglas production function to analyze the impact of abnormal weather on energy industry production using temperature and precipitation indicators. In particular, the government identified the impact of abnormal weather conditions on manufacturing and public works related to the Korean energy industry. The results showed that the numbers of freezing days and heavy rain days adversely affect public works, whereas hot and cold days and heavy rain days all positively affect the production of coal, petroleum, and chemical products. These results also led to regional risk assessments of the energy industry. This study can help in developing the 2030 industry climate change adaptation plan.

Suggested Citation

  • Solji Nam & Jungwoo Shin & Jaena Ryu & Hanee Ryu, 2021. "Climate impacts on geographical changes in the energy industry," Business Strategy and the Environment, Wiley Blackwell, vol. 30(1), pages 478-488, January.
  • Handle: RePEc:bla:bstrat:v:30:y:2021:i:1:p:478-488
    DOI: 10.1002/bse.2632
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/bse.2632
    Download Restriction: no

    File URL: https://libkey.io/10.1002/bse.2632?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Melissa Dell & Benjamin F. Jones & Benjamin A. Olken, 2012. "Temperature Shocks and Economic Growth: Evidence from the Last Half Century," American Economic Journal: Macroeconomics, American Economic Association, vol. 4(3), pages 66-95, July.
    2. Nordhaus, William D & Yang, Zili, 1996. "A Regional Dynamic General-Equilibrium Model of Alternative Climate-Change Strategies," American Economic Review, American Economic Association, vol. 86(4), pages 741-765, September.
    3. Mari Kangasniemi & Matilde Mas & Catherine Robinson & Lorenzo Serrano, 2012. "The economic impact of migration: productivity analysis for Spain and the UK," Journal of Productivity Analysis, Springer, vol. 38(3), pages 333-343, December.
    4. Keen, Steve & Ayres, Robert U. & Standish, Russell, 2019. "A Note on the Role of Energy in Production," Ecological Economics, Elsevier, vol. 157(C), pages 40-46.
    5. Ciscar, Juan-Carlos & Dowling, Paul, 2014. "Integrated assessment of climate impacts and adaptation in the energy sector," Energy Economics, Elsevier, vol. 46(C), pages 531-538.
    6. Seljom, Pernille & Rosenberg, Eva & Fidje, Audun & Haugen, Jan Erik & Meir, Michaela & Rekstad, John & Jarlset, Thore, 2011. "Modelling the effects of climate change on the energy system—A case study of Norway," Energy Policy, Elsevier, vol. 39(11), pages 7310-7321.
    7. Jorge Rivera & Viviane Clement, 2019. "Business adaptation to climate change: American ski resorts and warmer temperatures," Business Strategy and the Environment, Wiley Blackwell, vol. 28(7), pages 1285-1301, November.
    8. Sailor, David J. & Muñoz, J.Ricardo, 1997. "Sensitivity of electricity and natural gas consumption to climate in the U.S.A.—Methodology and results for eight states," Energy, Elsevier, vol. 22(10), pages 987-998.
    9. Keleş, Büşra & Gómez-Acevedo, Patricia & Shaikh, Nazrul I., 2018. "The impact of systematic changes in weather on the supply and demand of beverages," International Journal of Production Economics, Elsevier, vol. 195(C), pages 186-197.
    10. Marjorie L. Handsaker & Paul H. Douglas, 1937. "The Theory of Marginal Productivity Tested by Data for Manufacturing in Victoria, I," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 52(1), pages 1-36.
    11. Tatyana Deryugina & Solomon M. Hsiang, 2014. "Does the Environment Still Matter? Daily Temperature and Income in the United States," NBER Working Papers 20750, National Bureau of Economic Research, Inc.
    12. Thomas A. Tsalis & Ioannis E. Nikolaou, 2017. "Assessing the Effects of Climate Change Regulations on the Business Community: A System Dynamic Approach," Business Strategy and the Environment, Wiley Blackwell, vol. 26(6), pages 826-843, September.
    13. Yuan, Chaoqing & Liu, Sifeng & Wu, Junlong, 2009. "Research on energy-saving effect of technological progress based on Cobb-Douglas production function," Energy Policy, Elsevier, vol. 37(8), pages 2842-2846, August.
    14. J. Williams, 1945. "Professor Douglas‘ Production Function," The Economic Record, The Economic Society of Australia, vol. 21(1), pages 55-63, June.
    15. Pilli-Sihvola, Karoliina & Aatola, Piia & Ollikainen, Markku & Tuomenvirta, Heikki, 2010. "Climate change and electricity consumption--Witnessing increasing or decreasing use and costs?," Energy Policy, Elsevier, vol. 38(5), pages 2409-2419, May.
    16. Andrea Bigano & Alessandra Goria & Jacqueline Hamilton & Richard S.J. Tol, 2005. "The Effect of Climate Change and Extreme Weather Events on Tourism," Working Papers 2005.30, Fondazione Eni Enrico Mattei.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chiang, Chang-Tang, 2024. "A systematic literature network analysis of green information technology for sustainability: Toward smart and sustainable livelihoods," Technological Forecasting and Social Change, Elsevier, vol. 199(C).
    2. Weicheng Xu & Hanxia Li, 2024. "Can Digital Finance Enable China’s Industrial Carbon Unlocking under Environmental Regulatory Constraints? Joint Tests of Regression Analysis and Qualitative Comparative Analysis," Sustainability, MDPI, vol. 16(10), pages 1-37, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tung, Ching-Pin & Tseng, Tze-Chi & Huang, An-Lei & Liu, Tzu-Ming & Hu, Ming-Che, 2013. "Impact of climate change on Taiwanese power market determined using linear complementarity model," Applied Energy, Elsevier, vol. 102(C), pages 432-439.
    2. Chen, Xinming & Fang, Tong, 2024. "Temperature anomalies and foreign direct investment: City-level evidence from China," International Review of Financial Analysis, Elsevier, vol. 91(C).
    3. Yubin Zhao & Shuguang Liu, 2023. "Effects of Climate Change on Economic Growth: A Perspective of the Heterogeneous Climate Regions in Africa," Sustainability, MDPI, vol. 15(9), pages 1-22, April.
    4. Kahn, Matthew E. & Zhao, Daxuan, 2018. "The impact of climate change skepticism on adaptation in a market economy," Research in Economics, Elsevier, vol. 72(2), pages 251-262.
    5. Hu, Haiqing & Wei, Wei & Chang, Chun-Ping, 2022. "Examining the impact of extreme temperature on green innovation in China: Evidence from city-level data," Energy Economics, Elsevier, vol. 114(C).
    6. Wilde, Joshua & Apouey, Bénédicte H. & Jung, Toni, 2017. "The effect of ambient temperature shocks during conception and early pregnancy on later life outcomes," European Economic Review, Elsevier, vol. 97(C), pages 87-107.
    7. Shiran Victoria Shen, 2021. "Integrating Political Science into Climate Modeling: An Example of Internalizing the Costs of Climate-Induced Violence in the Optimal Management of the Climate," Sustainability, MDPI, vol. 13(19), pages 1-24, September.
    8. Melissa Dell & Benjamin F. Jones & Benjamin A. Olken, 2014. "What Do We Learn from the Weather? The New Climate-Economy Literature," Journal of Economic Literature, American Economic Association, vol. 52(3), pages 740-798, September.
    9. Pindyck, Robert S., 2019. "The social cost of carbon revisited," Journal of Environmental Economics and Management, Elsevier, vol. 94(C), pages 140-160.
    10. Kalkuhl, Matthias & Wenz, Leonie, 2020. "The impact of climate conditions on economic production. Evidence from a global panel of regions," Journal of Environmental Economics and Management, Elsevier, vol. 103(C).
    11. Nicolas Taconet & Aurélie Méjean & Céline Guivarch, 2020. "Influence of climate change impacts and mitigation costs on inequality between countries," Climatic Change, Springer, vol. 160(1), pages 15-34, May.
    12. Tobias Kranz & Hamza Bennani & Matthias Neuenkirch, 2024. "Monetary Policy and Climate Change: Challenges and the Role of Major Central Banks," Research Papers in Economics 2024-01, University of Trier, Department of Economics.
    13. Lamperti, F. & Dosi, G. & Napoletano, M. & Roventini, A. & Sapio, A., 2018. "Faraway, So Close: Coupled Climate and Economic Dynamics in an Agent-based Integrated Assessment Model," Ecological Economics, Elsevier, vol. 150(C), pages 315-339.
    14. Haroon Mumtaz & Fulvia Marotta, 2023. "Vulnerability to Climate Change: Evidence from a Dynamic Factor Model," Working Papers 961, Queen Mary University of London, School of Economics and Finance.
    15. Yuan, Zhengrong & Ding, Hai & Yu, Qiuzuo, 2024. "High temperature, bargaining power and within-firm wage inequality: Evidence from China," Economic Modelling, Elsevier, vol. 135(C).
    16. Cai, Xiqian & Lu, Yi & Wang, Jin, 2018. "The impact of temperature on manufacturing worker productivity: Evidence from personnel data," Journal of Comparative Economics, Elsevier, vol. 46(4), pages 889-905.
    17. Franziska Piontek & Matthias Kalkuhl & Elmar Kriegler & Anselm Schultes & Marian Leimbach & Ottmar Edenhofer & Nico Bauer, 2019. "Economic Growth Effects of Alternative Climate Change Impact Channels in Economic Modeling," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 73(4), pages 1357-1385, August.
    18. Ronald R. Kumar & Peter J. Stauvermann, 2019. "The Effects of a Revenue-Neutral Child Subsidy Tax Mechanism on Growth and GHG Emissions," Sustainability, MDPI, vol. 11(9), pages 1-23, May.
    19. Maria Waldinger, 2015. "The effects of climate change on internal and international migration: implications for developing countries," GRI Working Papers 192, Grantham Research Institute on Climate Change and the Environment.
    20. Peter H. Howard & Thomas Sterner, 2017. "Few and Not So Far Between: A Meta-analysis of Climate Damage Estimates," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 68(1), pages 197-225, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:bstrat:v:30:y:2021:i:1:p:478-488. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://onlinelibrary.wiley.com/journal/10.1002/(ISSN)1099-0836 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.