IDEAS home Printed from https://ideas.repec.org/a/bla/biomet/v79y2023i4p2869-2880.html
   My bibliography  Save this article

Regression‐based multiple treatment effect estimation under covariate‐adaptive randomization

Author

Listed:
  • Yujia Gu
  • Hanzhong Liu
  • Wei Ma

Abstract

Covariate‐adaptive randomization methods are widely used in clinical trials to balance baseline covariates. Recent studies have shown the validity of using regression‐based estimators for treatment effects without imposing functional form requirements on the true data generation model. These studies have had limitations in certain scenarios; for example, in the case of multiple treatment groups, these studies did not consider additional covariates or assumed that the allocation ratios were the same across strata. To address these limitations, we develop a stratum‐common estimator and a stratum‐specific estimator under multiple treatments. We derive the asymptotic behaviors of these estimators and propose consistent nonparametric estimators for asymptotic variances. To determine their efficiency, we compare the estimators with the stratified difference‐in‐means estimator as the benchmark. We find that the stratum‐specific estimator guarantees efficiency gains, regardless of whether the allocation ratios across strata are the same or different. Our conclusions were also validated by simulation studies and a real clinical trial example.

Suggested Citation

  • Yujia Gu & Hanzhong Liu & Wei Ma, 2023. "Regression‐based multiple treatment effect estimation under covariate‐adaptive randomization," Biometrics, The International Biometric Society, vol. 79(4), pages 2869-2880, December.
  • Handle: RePEc:bla:biomet:v:79:y:2023:i:4:p:2869-2880
    DOI: 10.1111/biom.13925
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/biom.13925
    Download Restriction: no

    File URL: https://libkey.io/10.1111/biom.13925?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Federico A. Bugni & Ivan A. Canay & Azeem M. Shaikh, 2018. "Inference Under Covariate-Adaptive Randomization," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 113(524), pages 1784-1796, October.
    2. Federico A. Bugni & Ivan A. Canay & Azeem M. Shaikh, 2019. "Inference under covariate‐adaptive randomization with multiple treatments," Quantitative Economics, Econometric Society, vol. 10(4), pages 1747-1785, November.
    3. Jun Shao & Xinxin Yu & Bob Zhong, 2010. "A theory for testing hypotheses under covariate-adaptive randomization," Biometrika, Biometrika Trust, vol. 97(2), pages 347-360.
    4. Wei Ma & Feifang Hu & Lixin Zhang, 2015. "Testing Hypotheses of Covariate-Adaptive Randomized Clinical Trials," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 110(510), pages 669-680, June.
    5. Yang L. & Tsiatis A. A., 2001. "Efficiency Study of Estimators for a Treatment Effect in a Pretest-Posttest Trial," The American Statistician, American Statistical Association, vol. 55, pages 314-321, November.
    6. Yuehao Bai & Joseph P. Romano & Azeem M. Shaikh, 2022. "Inference in Experiments With Matched Pairs," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 117(540), pages 1726-1737, October.
    7. Joshua Angrist & Philip Oreopoulos & Tyler Williams, 2014. "When Opportunity Knocks, Who Answers?: New Evidence on College Achievement Awards," Journal of Human Resources, University of Wisconsin Press, vol. 49(3), pages 572-610.
    8. Alberto Chong & Isabelle Cohen & Erica Field & Eduardo Nakasone & Maximo Torero, 2016. "Iron Deficiency and Schooling Attainment in Peru," American Economic Journal: Applied Economics, American Economic Association, vol. 8(4), pages 222-255, October.
    9. Tong Wang & Wei Ma, 2021. "The impact of misclassification on covariate‐adaptive randomized clinical trials," Biometrics, The International Biometric Society, vol. 77(2), pages 451-464, June.
    10. Ting Ye & Yanyao Yi & Jun Shao, 2022. "Inference on the average treatment effect under minimization and other covariate-adaptive randomization methods [Optimum biased coin designs for sequential clinical trials with prognostic factors]," Biometrika, Biometrika Trust, vol. 109(1), pages 33-47.
    11. Wei Ma & Yichen Qin & Yang Li & Feifang Hu, 2020. "Statistical Inference for Covariate-Adaptive Randomization Procedures," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 115(531), pages 1488-1497, July.
    12. Kevin Guo & Guillaume Basse, 2023. "The Generalized Oaxaca-Blinder Estimator," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 118(541), pages 524-536, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jiang, Liang & Phillips, Peter C.B. & Tao, Yubo & Zhang, Yichong, 2023. "Regression-adjusted estimation of quantile treatment effects under covariate-adaptive randomizations," Journal of Econometrics, Elsevier, vol. 234(2), pages 758-776.
    2. Liang Jiang & Oliver B. Linton & Haihan Tang & Yichong Zhang, 2022. "Improving Estimation Efficiency via Regression-Adjustment in Covariate-Adaptive Randomizations with Imperfect Compliance," Papers 2201.13004, arXiv.org, revised Jun 2023.
    3. Liang Jiang & Liyao Li & Ke Miao & Yichong Zhang, 2023. "Adjustment with Many Regressors Under Covariate-Adaptive Randomizations," Papers 2304.08184, arXiv.org, revised Feb 2024.
    4. Zhao, Anqi & Ding, Peng, 2024. "No star is good news: A unified look at rerandomization based on p-values from covariate balance tests," Journal of Econometrics, Elsevier, vol. 241(1).
    5. Yichong Zhang & Xin Zheng, 2020. "Quantile treatment effects and bootstrap inference under covariate‐adaptive randomization," Quantitative Economics, Econometric Society, vol. 11(3), pages 957-982, July.
    6. Tong Wang & Wei Ma, 2021. "The impact of misclassification on covariate‐adaptive randomized clinical trials," Biometrics, The International Biometric Society, vol. 77(2), pages 451-464, June.
    7. Federico A. Bugni & Ivan A. Canay & Azeem M. Shaikh, 2018. "Inference Under Covariate-Adaptive Randomization," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 113(524), pages 1784-1796, October.
    8. John A. List & Azeem M. Shaikh & Atom Vayalinkal, 2023. "Multiple testing with covariate adjustment in experimental economics," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 38(6), pages 920-939, September.
    9. Yuehao Bai & Azeem M. Shaikh & Max Tabord-Meehan, 2024. "A Primer on the Analysis of Randomized Experiments and a Survey of some Recent Advances," Papers 2405.03910, arXiv.org.
    10. Zhao, Anqi & Ding, Peng, 2021. "Covariate-adjusted Fisher randomization tests for the average treatment effect," Journal of Econometrics, Elsevier, vol. 225(2), pages 278-294.
    11. David M. Ritzwoller & Joseph P. Romano & Azeem M. Shaikh, 2024. "Randomization Inference: Theory and Applications," Papers 2406.09521, arXiv.org.
    12. Ting Ye & Jun Shao, 2020. "Robust tests for treatment effect in survival analysis under covariate‐adaptive randomization," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 82(5), pages 1301-1323, December.
    13. Liang Jiang & Xiaobin Liu & Peter C. B. Phillips & Yichong Zhang, 2024. "Bootstrap Inference for Quantile Treatment Effects in Randomized Experiments with Matched Pairs," The Review of Economics and Statistics, MIT Press, vol. 106(2), pages 542-556, March.
    14. Guiteras, Raymond P. & Levine, David I. & Polley, Thomas H., 2016. "The pursuit of balance in sequential randomized trials," Development Engineering, Elsevier, vol. 1(C), pages 12-25.
    15. Federico A. Bugni & Ivan A. Canay & Azeem M. Shaikh, 2019. "Inference under covariate‐adaptive randomization with multiple treatments," Quantitative Economics, Econometric Society, vol. 10(4), pages 1747-1785, November.
    16. Chung, EunYi & Olivares, Mauricio, 2021. "Permutation test for heterogeneous treatment effects with a nuisance parameter," Journal of Econometrics, Elsevier, vol. 225(2), pages 148-174.
    17. Yuehao Bai & Joseph P. Romano & Azeem M. Shaikh, 2022. "Inference in Experiments With Matched Pairs," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 117(540), pages 1726-1737, October.
    18. Bai, Yuehao & Jiang, Liang & Romano, Joseph P. & Shaikh, Azeem M. & Zhang, Yichong, 2024. "Covariate adjustment in experiments with matched pairs," Journal of Econometrics, Elsevier, vol. 241(1).
    19. Haoge Chang, 2023. "Design-based Estimation Theory for Complex Experiments," Papers 2311.06891, arXiv.org.
    20. Young, Alwyn, 2024. "Asymptotically robust permutation-based randomization confidence intervals for parametric OLS regression," LSE Research Online Documents on Economics 120933, London School of Economics and Political Science, LSE Library.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:biomet:v:79:y:2023:i:4:p:2869-2880. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0006-341X .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.