IDEAS home Printed from https://ideas.repec.org/a/bla/biomet/v79y2023i3p2260-2271.html
   My bibliography  Save this article

Estimating tree‐based dynamic treatment regimes using observational data with restricted treatment sequences

Author

Listed:
  • Nina Zhou
  • Lu Wang
  • Daniel Almirall

Abstract

A dynamic treatment regime (DTR) is a sequence of decision rules that provide guidance on how to treat individuals based on their static and time‐varying status. Existing observational data are often used to generate hypotheses about effective DTRs. A common challenge with observational data, however, is the need for analysts to consider “restrictions” on the treatment sequences. Such restrictions may be necessary for settings where (1) one or more treatment sequences that were offered to individuals when the data were collected are no longer considered viable in practice, (2) specific treatment sequences are no longer available, or (3) the scientific focus of the analysis concerns a specific type of treatment sequences (eg, “stepped‐up” treatments). To address this challenge, we propose a restricted tree–based reinforcement learning (RT‐RL) method that searches for an interpretable DTR with the maximum expected outcome, given a (set of) user‐specified restriction(s), which specifies treatment options (at each stage) that ought not to be considered as part of the estimated tree‐based DTR. In simulations, we evaluate the performance of RT‐RL versus the standard approach of ignoring the partial data for individuals not following the (set of) restriction(s). The method is illustrated using an observational data set to estimate a two‐stage stepped‐up DTR for guiding the level of care placement for adolescents with substance use disorder.

Suggested Citation

  • Nina Zhou & Lu Wang & Daniel Almirall, 2023. "Estimating tree‐based dynamic treatment regimes using observational data with restricted treatment sequences," Biometrics, The International Biometric Society, vol. 79(3), pages 2260-2271, September.
  • Handle: RePEc:bla:biomet:v:79:y:2023:i:3:p:2260-2271
    DOI: 10.1111/biom.13754
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/biom.13754
    Download Restriction: no

    File URL: https://libkey.io/10.1111/biom.13754?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Lu Wang & Andrea Rotnitzky & Xihong Lin & Randall E. Millikan & Peter F. Thall, 2012. "Evaluation of Viable Dynamic Treatment Regimes in a Sequentially Randomized Trial of Advanced Prostate Cancer," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 107(498), pages 493-508, June.
    2. Yilun Sun & Lu Wang, 2021. "Stochastic Tree Search for Estimating Optimal Dynamic Treatment Regimes," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 116(533), pages 421-432, January.
    3. Yebin Tao & Lu Wang, 2017. "Adaptive contrast weighted learning for multi-stage multi-treatment decision-making," Biometrics, The International Biometric Society, vol. 73(1), pages 145-155, March.
    4. S. A. Murphy, 2003. "Optimal dynamic treatment regimes," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 65(2), pages 331-355, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yingchao Zhong & Chang Wang & Lu Wang, 2021. "Survival Augmented Patient Preference Incorporated Reinforcement Learning to Evaluate Tailoring Variables for Personalized Healthcare," Stats, MDPI, vol. 4(4), pages 1-17, September.
    2. Thomas A. Murray & Peter F. Thall & Ying Yuan & Sarah McAvoy & Daniel R. Gomez, 2017. "Robust Treatment Comparison Based on Utilities of Semi-Competing Risks in Non-Small-Cell Lung Cancer," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(517), pages 11-23, January.
    3. Michael P. Wallace & Erica E. M. Moodie, 2015. "Doubly‐robust dynamic treatment regimen estimation via weighted least squares," Biometrics, The International Biometric Society, vol. 71(3), pages 636-644, September.
    4. Dana Johnson & Wenbin Lu & Marie Davidian, 2023. "A general framework for subgroup detection via one‐step value difference estimation," Biometrics, The International Biometric Society, vol. 79(3), pages 2116-2126, September.
    5. Shosei Sakaguchi, 2024. "Policy Learning for Optimal Dynamic Treatment Regimes with Observational Data," Papers 2404.00221, arXiv.org, revised Dec 2024.
    6. Jincheng Shen & Lu Wang & Jeremy M. G. Taylor, 2017. "Estimation of the optimal regime in treatment of prostate cancer recurrence from observational data using flexible weighting models," Biometrics, The International Biometric Society, vol. 73(2), pages 635-645, June.
    7. Yebin Tao & Lu Wang, 2017. "Adaptive contrast weighted learning for multi-stage multi-treatment decision-making," Biometrics, The International Biometric Society, vol. 73(1), pages 145-155, March.
    8. Q. Clairon & R. Henderson & N. J. Young & E. D. Wilson & C. J. Taylor, 2021. "Adaptive treatment and robust control," Biometrics, The International Biometric Society, vol. 77(1), pages 223-236, March.
    9. Jin Wang & Donglin Zeng & D. Y. Lin, 2022. "Semiparametric single-index models for optimal treatment regimens with censored outcomes," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 28(4), pages 744-763, October.
    10. Shonosuke Sugasawa & Hisashi Noma, 2021. "Efficient screening of predictive biomarkers for individual treatment selection," Biometrics, The International Biometric Society, vol. 77(1), pages 249-257, March.
    11. Ji Liu, 2024. "Education legislations that equalize: a study of compulsory schooling law reforms in post-WWII United States," Palgrave Communications, Palgrave Macmillan, vol. 11(1), pages 1-12, December.
    12. Jingxiang Chen & Yufeng Liu & Donglin Zeng & Rui Song & Yingqi Zhao & Michael R. Kosorok, 2016. "Comment," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 111(515), pages 942-947, July.
    13. Early Kirstin & Mankoff Jennifer & Fienberg Stephen E., 2017. "Dynamic Question Ordering in Online Surveys," Journal of Official Statistics, Sciendo, vol. 33(3), pages 625-657, September.
    14. Jelena Bradic & Weijie Ji & Yuqian Zhang, 2021. "High-dimensional Inference for Dynamic Treatment Effects," Papers 2110.04924, arXiv.org, revised May 2023.
    15. Han, Sukjin, 2021. "Identification in nonparametric models for dynamic treatment effects," Journal of Econometrics, Elsevier, vol. 225(2), pages 132-147.
    16. Durlauf, Steven N. & Navarro, Salvador & Rivers, David A., 2016. "Model uncertainty and the effect of shall-issue right-to-carry laws on crime," European Economic Review, Elsevier, vol. 81(C), pages 32-67.
    17. Kastoryano, Stephen, 2024. "Biological, Behavioural and Spurious Selection on the Kidney Transplant Waitlist," IZA Discussion Papers 16995, Institute of Labor Economics (IZA).
    18. Michael C Knaus & Michael Lechner & Anthony Strittmatter, 2021. "Machine learning estimation of heterogeneous causal effects: Empirical Monte Carlo evidence," The Econometrics Journal, Royal Economic Society, vol. 24(1), pages 134-161.
    19. Yufan Zhao & Donglin Zeng & Mark A. Socinski & Michael R. Kosorok, 2011. "Reinforcement Learning Strategies for Clinical Trials in Nonsmall Cell Lung Cancer," Biometrics, The International Biometric Society, vol. 67(4), pages 1422-1433, December.
    20. Luo, Yu & Graham, Daniel J. & McCoy, Emma J., 2023. "Semiparametric Bayesian doubly robust causal estimation," LSE Research Online Documents on Economics 117944, London School of Economics and Political Science, LSE Library.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:biomet:v:79:y:2023:i:3:p:2260-2271. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0006-341X .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.