IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2404.00221.html
   My bibliography  Save this paper

Policy Learning for Optimal Dynamic Treatment Regimes with Observational Data

Author

Listed:
  • Shosei Sakaguchi

Abstract

Public policies and medical interventions often involve dynamics in their treatment assignments, where individuals receive a series of interventions over multiple stages. We study the statistical learning of optimal dynamic treatment regimes (DTRs) that guide the optimal treatment assignment for each individual at each stage based on the individual's evolving history. We propose a doubly robust, classification-based approach to learning the optimal DTR using observational data under the assumption of sequential ignorability. This approach learns the optimal DTR through backward induction. At each step, it constructs an augmented inverse probability weighting (AIPW) estimator of the policy value function and maximizes it to learn the optimal policy for the corresponding stage. We show that the resulting DTR can achieve an optimal convergence rate of $n^{-1/2}$ for welfare regret under mild convergence conditions on estimators of the nuisance components.

Suggested Citation

  • Shosei Sakaguchi, 2024. "Policy Learning for Optimal Dynamic Treatment Regimes with Observational Data," Papers 2404.00221, arXiv.org, revised Dec 2024.
  • Handle: RePEc:arx:papers:2404.00221
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2404.00221
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Nathan Kallus, 2021. "More Efficient Policy Learning via Optimal Retargeting," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 116(534), pages 646-658, April.
    2. Xiao Liu, 2023. "Dynamic Coupon Targeting Using Batch Deep Reinforcement Learning: An Application to Livestream Shopping," Marketing Science, INFORMS, vol. 42(4), pages 637-658, July.
    3. Alan B. Krueger, 1999. "Experimental Estimates of Education Production Functions," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 114(2), pages 497-532.
    4. Weili Ding & Steven F. Lehrer, 2010. "Estimating Treatment Effects from Contaminated Multiperiod Education Experiments: The Dynamic Impacts of Class Size Reductions," The Review of Economics and Statistics, MIT Press, vol. 92(1), pages 31-42, February.
    5. Victor Chernozhukov & Denis Chetverikov & Mert Demirer & Esther Duflo & Christian Hansen & Whitney Newey & James Robins, 2018. "Double/debiased machine learning for treatment and structural parameters," Econometrics Journal, Royal Economic Society, vol. 21(1), pages 1-68, February.
    6. E. B. Laber & Y. Q. Zhao, 2015. "Tree-based methods for individualized treatment regimes," Biometrika, Biometrika Trust, vol. 102(3), pages 501-514.
    7. Toru Kitagawa & Aleksey Tetenov, 2018. "Who Should Be Treated? Empirical Welfare Maximization Methods for Treatment Choice," Econometrica, Econometric Society, vol. 86(2), pages 591-616, March.
    8. Raj Chetty & John N. Friedman & Nathaniel Hilger & Emmanuel Saez & Diane Whitmore Schanzenbach & Danny Yagan, 2011. "How Does Your Kindergarten Classroom Affect Your Earnings? Evidence from Project Star," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 126(4), pages 1593-1660.
    9. Michael P. Wallace & Erica E. M. Moodie, 2015. "Doubly‐robust dynamic treatment regimen estimation via weighted least squares," Biometrics, The International Biometric Society, vol. 71(3), pages 636-644, September.
    10. Jorge Rodríguez & Fernando Saltiel & Sergio Urzúa, 2022. "Dynamic treatment effects of job training," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 37(2), pages 242-269, March.
    11. Xinkun Nie & Emma Brunskill & Stefan Wager, 2021. "Learning When-to-Treat Policies," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 116(533), pages 392-409, January.
    12. Charles F. Manski, 2004. "Statistical Treatment Rules for Heterogeneous Populations," Econometrica, Econometric Society, vol. 72(4), pages 1221-1246, July.
    13. S. A. Murphy, 2003. "Optimal dynamic treatment regimes," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 65(2), pages 331-355, May.
    14. Baqun Zhang & Anastasios A. Tsiatis & Eric B. Laber & Marie Davidian, 2013. "Robust estimation of optimal dynamic treatment regimes for sequential treatment decisions," Biometrika, Biometrika Trust, vol. 100(3), pages 681-694.
    15. Lechner, Michael, 2009. "Sequential Causal Models for the Evaluation of Labor Market Programs," Journal of Business & Economic Statistics, American Statistical Association, vol. 27, pages 71-83.
    16. Yilun Sun & Lu Wang, 2021. "Stochastic Tree Search for Estimating Optimal Dynamic Treatment Regimes," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 116(533), pages 421-432, January.
    17. Raphael Fonteneau & Susan Murphy & Louis Wehenkel & Damien Ernst, 2013. "Batch mode reinforcement learning based on the synthesis of artificial trajectories," Annals of Operations Research, Springer, vol. 208(1), pages 383-416, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shosei Sakaguchi, 2021. "Estimation of Optimal Dynamic Treatment Assignment Rules under Policy Constraints," Papers 2106.05031, arXiv.org, revised Aug 2024.
    2. Susan Athey & Stefan Wager, 2021. "Policy Learning With Observational Data," Econometrica, Econometric Society, vol. 89(1), pages 133-161, January.
    3. Weibin Mo & Yufeng Liu, 2022. "Efficient learning of optimal individualized treatment rules for heteroscedastic or misspecified treatment‐free effect models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 84(2), pages 440-472, April.
    4. Huber, Martin, 2019. "An introduction to flexible methods for policy evaluation," FSES Working Papers 504, Faculty of Economics and Social Sciences, University of Freiburg/Fribourg Switzerland.
    5. Davide Viviano & Jess Rudder, 2020. "Policy design in experiments with unknown interference," Papers 2011.08174, arXiv.org, revised May 2024.
    6. Davide Viviano, 2019. "Policy Targeting under Network Interference," Papers 1906.10258, arXiv.org, revised Apr 2024.
    7. Shi, Chengchun & Luo, Shikai & Le, Yuan & Zhu, Hongtu & Song, Rui, 2022. "Statistically efficient advantage learning for offline reinforcement learning in infinite horizons," LSE Research Online Documents on Economics 115598, London School of Economics and Political Science, LSE Library.
    8. Chunrong Ai & Yue Fang & Haitian Xie, 2024. "Data-driven Policy Learning for Continuous Treatments," Papers 2402.02535, arXiv.org, revised Nov 2024.
    9. Julia Hatamyar & Noemi Kreif, 2023. "Policy Learning with Rare Outcomes," Papers 2302.05260, arXiv.org, revised Oct 2023.
    10. Q. Clairon & R. Henderson & N. J. Young & E. D. Wilson & C. J. Taylor, 2021. "Adaptive treatment and robust control," Biometrics, The International Biometric Society, vol. 77(1), pages 223-236, March.
    11. Kyle Colangelo & Ying-Ying Lee, 2019. "Double debiased machine learning nonparametric inference with continuous treatments," CeMMAP working papers CWP72/19, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    12. Jelena Bradic & Weijie Ji & Yuqian Zhang, 2021. "High-dimensional Inference for Dynamic Treatment Effects," Papers 2110.04924, arXiv.org, revised May 2023.
    13. Anders Bredahl Kock & Martin Thyrsgaard, 2017. "Optimal sequential treatment allocation," Papers 1705.09952, arXiv.org, revised Aug 2018.
    14. Timothy B. Armstrong & Shu Shen, 2013. "Inference on Optimal Treatment Assignments," Cowles Foundation Discussion Papers 1927RR, Cowles Foundation for Research in Economics, Yale University, revised Apr 2015.
    15. Ruoqing Zhu & Ying-Qi Zhao & Guanhua Chen & Shuangge Ma & Hongyu Zhao, 2017. "Greedy outcome weighted tree learning of optimal personalized treatment rules," Biometrics, The International Biometric Society, vol. 73(2), pages 391-400, June.
    16. Michael C Knaus, 2022. "Double machine learning-based programme evaluation under unconfoundedness [Econometric methods for program evaluation]," The Econometrics Journal, Royal Economic Society, vol. 25(3), pages 602-627.
    17. Kyle Colangelo & Ying-Ying Lee, 2020. "Double Debiased Machine Learning Nonparametric Inference with Continuous Treatments," Papers 2004.03036, arXiv.org, revised Sep 2023.
    18. Henrika Langen & Martin Huber, 2022. "How causal machine learning can leverage marketing strategies: Assessing and improving the performance of a coupon campaign," Papers 2204.10820, arXiv.org, revised Jun 2022.
    19. Toru Kitagawa & Weining Wang & Mengshan Xu, 2022. "Policy Choice in Time Series by Empirical Welfare Maximization," Papers 2205.03970, arXiv.org, revised Dec 2024.
    20. Augustine Denteh & Helge Liebert, 2022. "Who Increases Emergency Department Use? New Insights from the Oregon Health Insurance Experiment," Papers 2201.07072, arXiv.org, revised Apr 2023.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2404.00221. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.