IDEAS home Printed from https://ideas.repec.org/a/bla/biomet/v79y2023i2p734-746.html
   My bibliography  Save this article

A time‐heterogeneous D‐vine copula model for unbalanced and unequally spaced longitudinal data

Author

Listed:
  • Md Erfanul Hoque
  • Elif F. Acar
  • Mahmoud Torabi

Abstract

In many longitudinal studies, the number and timing of measurements differ across study subjects. Statistical analysis of such data requires accounting for both the unbalanced study design and the unequal spacing of repeated measurements. This paper proposes a time‐heterogeneous D‐vine copula model that allows for time adjustment in the dependence structure of unequally spaced and potentially unbalanced longitudinal data. The proposed approach not only offers flexibility over its time‐homogeneous counterparts but also allows for parsimonious model specifications at the tree or vine level for a given D‐vine structure. It further provides a robust strategy to specify the joint distribution of non‐Gaussian longitudinal data. The performance of the time‐heterogeneous D‐vine copula models are evaluated through simulation studies and by a real data application. Our findings suggest improved predictive performance of the proposed approach over the linear mixed‐effects model and time‐homogeneous D‐vine copula model.

Suggested Citation

  • Md Erfanul Hoque & Elif F. Acar & Mahmoud Torabi, 2023. "A time‐heterogeneous D‐vine copula model for unbalanced and unequally spaced longitudinal data," Biometrics, The International Biometric Society, vol. 79(2), pages 734-746, June.
  • Handle: RePEc:bla:biomet:v:79:y:2023:i:2:p:734-746
    DOI: 10.1111/biom.13652
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/biom.13652
    Download Restriction: no

    File URL: https://libkey.io/10.1111/biom.13652?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Kraus, Daniel & Czado, Claudia, 2017. "D-vine copula based quantile regression," Computational Statistics & Data Analysis, Elsevier, vol. 110(C), pages 1-18.
    2. Frees, Edward W. & Wang, Ping, 2006. "Copula credibility for aggregate loss models," Insurance: Mathematics and Economics, Elsevier, vol. 38(2), pages 360-373, April.
    3. Dißmann, J. & Brechmann, E.C. & Czado, C. & Kurowicka, D., 2013. "Selecting and estimating regular vine copulae and application to financial returns," Computational Statistics & Data Analysis, Elsevier, vol. 59(C), pages 52-69.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Roger M. Cooke & Harry Joe & Bo Chang, 2020. "Vine copula regression for observational studies," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 104(2), pages 141-167, June.
    2. Okhrin, Yarema & Uddin, Gazi Salah & Yahya, Muhammad, 2023. "Nonlinear and asymmetric interconnectedness of crude oil with financial and commodity markets," Energy Economics, Elsevier, vol. 125(C).
    3. Czado, Claudia & Ivanov, Eugen & Okhrin, Yarema, 2019. "Modelling temporal dependence of realized variances with vines," Econometrics and Statistics, Elsevier, vol. 12(C), pages 198-216.
    4. Reboredo, Juan C. & Ugolini, Andrea, 2018. "The impact of energy prices on clean energy stock prices. A multivariate quantile dependence approach," Energy Economics, Elsevier, vol. 76(C), pages 136-152.
    5. Chang, Bo & Joe, Harry, 2019. "Prediction based on conditional distributions of vine copulas," Computational Statistics & Data Analysis, Elsevier, vol. 139(C), pages 45-63.
    6. M. Mesfioui & T. Bouezmarni & M. Belalia, 2023. "Copula-based link functions in binary regression models," Statistical Papers, Springer, vol. 64(2), pages 557-585, April.
    7. Genest Christian & Scherer Matthias, 2019. "The world of vines: An interview with Claudia Czado," Dependence Modeling, De Gruyter, vol. 7(1), pages 169-180, January.
    8. Wattanawongwan, Suttisak & Mues, Christophe & Okhrati, Ramin & Choudhry, Taufiq & So, Mee Chi, 2023. "Modelling credit card exposure at default using vine copula quantile regression," European Journal of Operational Research, Elsevier, vol. 311(1), pages 387-399.
    9. Dai, Xingyu & Wang, Qunwei & Zha, Donglan & Zhou, Dequn, 2020. "Multi-scale dependence structure and risk contagion between oil, gold, and US exchange rate: A wavelet-based vine-copula approach," Energy Economics, Elsevier, vol. 88(C).
    10. Zhu, Kailun & Kurowicka, Dorota & Nane, Gabriela F., 2021. "Simplified R-vine based forward regression," Computational Statistics & Data Analysis, Elsevier, vol. 155(C).
    11. Niemierko, Rochus & Töppel, Jannick & Tränkler, Timm, 2019. "A D-vine copula quantile regression approach for the prediction of residential heating energy consumption based on historical data," Applied Energy, Elsevier, vol. 233, pages 691-708.
    12. Yu, Lean & Zha, Rui & Stafylas, Dimitrios & He, Kaijian & Liu, Jia, 2020. "Dependences and volatility spillovers between the oil and stock markets: New evidence from the copula and VAR-BEKK-GARCH models," International Review of Financial Analysis, Elsevier, vol. 68(C).
    13. Sarabia, José María & Guillén, Montserrat, 2008. "Joint modelling of the total amount and the number of claims by conditionals," Insurance: Mathematics and Economics, Elsevier, vol. 43(3), pages 466-473, December.
    14. Tuoyuan Cheng & Kan Chen, 2023. "A General Framework for Portfolio Construction Based on Generative Models of Asset Returns," Papers 2312.03294, arXiv.org.
    15. Cao, Juan & Zhang, Zhao & Tao, Fulu & Chen, Yi & Luo, Xiangzhong & Xie, Jun, 2023. "Forecasting global crop yields based on El Nino Southern Oscillation early signals," Agricultural Systems, Elsevier, vol. 205(C).
    16. Zhang, Yi & Cheng, Chuntian & Cai, Huaxiang & Jin, Xiaoyu & Jia, Zebin & Wu, Xinyu & Su, Huaying & Yang, Tiantian, 2022. "Long-term stochastic model predictive control and efficiency assessment for hydro-wind-solar renewable energy supply system," Applied Energy, Elsevier, vol. 316(C).
    17. Jose Arreola Hernandez & Shawkat Hammoudeh & Duc Khuong Nguyen & Mazin A. M. Al Janabi & Juan Carlos Reboredo, 2017. "Global financial crisis and dependence risk analysis of sector portfolios: a vine copula approach," Applied Economics, Taylor & Francis Journals, vol. 49(25), pages 2409-2427, May.
    18. Syuhada, Khreshna & Hakim, Arief & Suprijanto, Djoko & Muchtadi-Alamsyah, Intan & Arbi, Lukman, 2022. "Is Tether a safe haven of safe haven amid COVID-19? An assessment against Bitcoin and oil using improved measures of risk," Resources Policy, Elsevier, vol. 79(C).
    19. Muhammad Mar’i & Turgut Tursoy, 2021. "Exchange Rate Dependency Between Emerging Countries-Case of Black Sea Countries," Capital Markets Review, Malaysian Finance Association, vol. 29(2), pages 43-54.
    20. Lado-Sestayo, Rubén & De Llano-Paz, Fernando & Vivel-Búa, Milagros & Martínez-Salgueiro, Andrea, 2023. "Commodity exposure in the eurozone: How EU energy security is conditioned by the Euro," Energy, Elsevier, vol. 277(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:biomet:v:79:y:2023:i:2:p:734-746. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0006-341X .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.