IDEAS home Printed from https://ideas.repec.org/a/spr/stpapr/v64y2023i2d10.1007_s00362-022-01330-y.html
   My bibliography  Save this article

Copula-based link functions in binary regression models

Author

Listed:
  • M. Mesfioui

    (Université du Québec à Trois-Rivières)

  • T. Bouezmarni

    (Université de Sherbrooke)

  • M. Belalia

    (University of Windsor)

Abstract

The paper proposes a new class of link functions for generalized binary regression based on copula models. The idea consists of writing the predictive probability of success (PPOS) in terms of marginal distributions and the conditional distribution for the copula. The proposed link functions provide flexible models and include the probit regression. A remarkable relationship with the logistic regression is also established in the case of a single covariate. To model the PPOS, a parametric family for the copula is considered and either a parametric or a nonparametric estimator for the marginal distributions is used. The asymptotic properties of these estimators are established and a simulation study is carried out to evaluate their performance. Finally, the methodology is illustrated by analyzing a data set on burn injury.

Suggested Citation

  • M. Mesfioui & T. Bouezmarni & M. Belalia, 2023. "Copula-based link functions in binary regression models," Statistical Papers, Springer, vol. 64(2), pages 557-585, April.
  • Handle: RePEc:spr:stpapr:v:64:y:2023:i:2:d:10.1007_s00362-022-01330-y
    DOI: 10.1007/s00362-022-01330-y
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00362-022-01330-y
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00362-022-01330-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Eric Bouye & Mark Salmon, 2009. "Dynamic copula quantile regressions and tail area dynamic dependence in Forex markets," The European Journal of Finance, Taylor & Francis Journals, vol. 15(7-8), pages 721-750.
    2. Roger M. Cooke & Harry Joe & Bo Chang, 2020. "Vine copula regression for observational studies," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 104(2), pages 141-167, June.
    3. Dißmann, J. & Brechmann, E.C. & Czado, C. & Kurowicka, D., 2013. "Selecting and estimating regular vine copulae and application to financial returns," Computational Statistics & Data Analysis, Elsevier, vol. 59(C), pages 52-69.
    4. Aristidis Nikoloulopoulos & Dimitris Karlis, 2010. "Regression in a copula model for bivariate count data," Journal of Applied Statistics, Taylor & Francis Journals, vol. 37(9), pages 1555-1568.
    5. Genest, Christian & Nešlehová, Johanna, 2007. "A Primer on Copulas for Count Data," ASTIN Bulletin, Cambridge University Press, vol. 37(2), pages 475-515, November.
    6. Kraus, Daniel & Czado, Claudia, 2017. "D-vine copula based quantile regression," Computational Statistics & Data Analysis, Elsevier, vol. 110(C), pages 1-18.
    7. Chang, Bo & Joe, Harry, 2019. "Prediction based on conditional distributions of vine copulas," Computational Statistics & Data Analysis, Elsevier, vol. 139(C), pages 45-63.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Saeed Aldahmani & Othmane Kortbi & Mhamed Mesfioui, 2024. "Copula-Based Regression with Mixed Covariates," Mathematics, MDPI, vol. 12(22), pages 1-15, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wattanawongwan, Suttisak & Mues, Christophe & Okhrati, Ramin & Choudhry, Taufiq & So, Mee Chi, 2023. "Modelling credit card exposure at default using vine copula quantile regression," European Journal of Operational Research, Elsevier, vol. 311(1), pages 387-399.
    2. Roger M. Cooke & Harry Joe & Bo Chang, 2020. "Vine copula regression for observational studies," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 104(2), pages 141-167, June.
    3. Chang, Bo & Joe, Harry, 2019. "Prediction based on conditional distributions of vine copulas," Computational Statistics & Data Analysis, Elsevier, vol. 139(C), pages 45-63.
    4. Zhu, Kailun & Kurowicka, Dorota & Nane, Gabriela F., 2021. "Simplified R-vine based forward regression," Computational Statistics & Data Analysis, Elsevier, vol. 155(C).
    5. Lu Yang & Claudia Czado, 2022. "Two‐part D‐vine copula models for longitudinal insurance claim data," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 49(4), pages 1534-1561, December.
    6. Reboredo, Juan C. & Ugolini, Andrea, 2018. "The impact of energy prices on clean energy stock prices. A multivariate quantile dependence approach," Energy Economics, Elsevier, vol. 76(C), pages 136-152.
    7. Tzougas, George & Makariou, Despoina, 2022. "The multivariate Poisson-Generalized Inverse Gaussian claim count regression model with varying dispersion and shape parameters," LSE Research Online Documents on Economics 117197, London School of Economics and Political Science, LSE Library.
    8. Genest Christian & Scherer Matthias, 2019. "The world of vines: An interview with Claudia Czado," Dependence Modeling, De Gruyter, vol. 7(1), pages 169-180, January.
    9. Panagiotelis, Anastasios & Czado, Claudia & Joe, Harry & Stöber, Jakob, 2017. "Model selection for discrete regular vine copulas," Computational Statistics & Data Analysis, Elsevier, vol. 106(C), pages 138-152.
    10. Pan Shenyi & Joe Harry, 2024. "Assessing copula models for mixed continuous-ordinal variables," Dependence Modeling, De Gruyter, vol. 12(1), pages 1-18.
    11. De Backer, Mickael & El Ghouch, Anouar & Van Keilegom, Ingrid, 2016. "Semiparametric Copula Quantile Regression for Complete or Censored Data," LIDAM Discussion Papers ISBA 2016009, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    12. Dai, Xingyu & Wang, Qunwei & Zha, Donglan & Zhou, Dequn, 2020. "Multi-scale dependence structure and risk contagion between oil, gold, and US exchange rate: A wavelet-based vine-copula approach," Energy Economics, Elsevier, vol. 88(C).
    13. Chen, Zezhun Chen & Dassios, Angelos & Tzougas, George, 2024. "EM estimation for bivariate mixed poisson INAR(1) claim count regression models with correlated random effects," LSE Research Online Documents on Economics 118826, London School of Economics and Political Science, LSE Library.
    14. Edward W. Frees & Gee Lee & Lu Yang, 2016. "Multivariate Frequency-Severity Regression Models in Insurance," Risks, MDPI, vol. 4(1), pages 1-36, February.
    15. Rémillard, Bruno & Nasri, Bouchra & Bouezmarni, Taoufik, 2017. "On copula-based conditional quantile estimators," Statistics & Probability Letters, Elsevier, vol. 128(C), pages 14-20.
    16. Patton, Andrew J., 2012. "A review of copula models for economic time series," Journal of Multivariate Analysis, Elsevier, vol. 110(C), pages 4-18.
    17. Niemierko, Rochus & Töppel, Jannick & Tränkler, Timm, 2019. "A D-vine copula quantile regression approach for the prediction of residential heating energy consumption based on historical data," Applied Energy, Elsevier, vol. 233, pages 691-708.
    18. Okhrin, Yarema & Uddin, Gazi Salah & Yahya, Muhammad, 2023. "Nonlinear and asymmetric interconnectedness of crude oil with financial and commodity markets," Energy Economics, Elsevier, vol. 125(C).
    19. Faugeras Olivier P., 2017. "Inference for copula modeling of discrete data: a cautionary tale and some facts," Dependence Modeling, De Gruyter, vol. 5(1), pages 121-132, January.
    20. Stöber, Jakob & Hong, Hyokyoung Grace & Czado, Claudia & Ghosh, Pulak, 2015. "Comorbidity of chronic diseases in the elderly: Patterns identified by a copula design for mixed responses," Computational Statistics & Data Analysis, Elsevier, vol. 88(C), pages 28-39.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:stpapr:v:64:y:2023:i:2:d:10.1007_s00362-022-01330-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.