IDEAS home Printed from https://ideas.repec.org/a/bla/biomet/v79y2023i2p1187-1200.html
   My bibliography  Save this article

Decomposition of variation of mixed variables by a latent mixed Gaussian copula model

Author

Listed:
  • Yutong Liu
  • Toni Darville
  • Xiaojing Zheng
  • Quefeng Li

Abstract

Many biomedical studies collect data of mixed types of variables from multiple groups of subjects. Some of these studies aim to find the group‐specific and the common variation among all these variables. Even though similar problems have been studied by some previous works, their methods mainly rely on the Pearson correlation, which cannot handle mixed data. To address this issue, we propose a latent mixed Gaussian copula (LMGC) model that can quantify the correlations among binary, ordinal, continuous, and truncated variables in a unified framework. We also provide a tool to decompose the variation into the group‐specific and the common variation over multiple groups via solving a regularized M‐estimation problem. We conduct extensive simulation studies to show the advantage of our proposed method over the Pearson correlation‐based methods. We also demonstrate that by jointly solving the M‐estimation problem over multiple groups, our method is better than decomposing the variation group by group. We also apply our method to a Chlamydia trachomatis genital tract infection study to demonstrate how it can be used to discover informative biomarkers that differentiate patients.

Suggested Citation

  • Yutong Liu & Toni Darville & Xiaojing Zheng & Quefeng Li, 2023. "Decomposition of variation of mixed variables by a latent mixed Gaussian copula model," Biometrics, The International Biometric Society, vol. 79(2), pages 1187-1200, June.
  • Handle: RePEc:bla:biomet:v:79:y:2023:i:2:p:1187-1200
    DOI: 10.1111/biom.13660
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/biom.13660
    Download Restriction: no

    File URL: https://libkey.io/10.1111/biom.13660?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Seung C. Ahn & Alex R. Horenstein, 2013. "Eigenvalue Ratio Test for the Number of Factors," Econometrica, Econometric Society, vol. 81(3), pages 1203-1227, May.
    2. Grace Yoon & Raymond J Carroll & Irina Gaynanova, 2020. "Sparse semiparametric canonical correlation analysis for data of mixed types," Biometrika, Biometrika Trust, vol. 107(3), pages 609-625.
    3. Jianqing Fan & Han Liu & Yang Ning & Hui Zou, 2017. "High dimensional semiparametric latent graphical model for mixed data," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 79(2), pages 405-421, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wu, Jianhong, 2019. "Detecting irrelevant variables in possible proxies for the latent factors in macroeconomics and finance," Economics Letters, Elsevier, vol. 176(C), pages 60-63.
    2. GUO-FITOUSSI, Liang, 2013. "A Comparison of the Finite Sample Properties of Selection Rules of Factor Numbers in Large Datasets," MPRA Paper 50005, University Library of Munich, Germany.
    3. Tomohiro Ando & Ruey S. Tsay, 2014. "A Predictive Approach for Selection of Diffusion Index Models," Econometric Reviews, Taylor & Francis Journals, vol. 33(1-4), pages 68-99, June.
    4. Chen, Qitong & Hong, Yongmiao & Li, Haiqi, 2024. "Time-varying forecast combination for factor-augmented regressions with smooth structural changes," Journal of Econometrics, Elsevier, vol. 240(1).
    5. Zhaoxing Gao & Ruey S. Tsay, 2021. "Divide-and-Conquer: A Distributed Hierarchical Factor Approach to Modeling Large-Scale Time Series Data," Papers 2103.14626, arXiv.org.
    6. Francesco Trebbi & Eric Weese, 2019. "Insurgency and Small Wars: Estimation of Unobserved Coalition Structures," Econometrica, Econometric Society, vol. 87(2), pages 463-496, March.
    7. Li, Hongjun & Li, Qi & Shi, Yutang, 2017. "Determining the number of factors when the number of factors can increase with sample size," Journal of Econometrics, Elsevier, vol. 197(1), pages 76-86.
    8. Shuquan Yang & Nengxiang Ling & Yulin Gong, 2022. "Robust estimation of the number of factors for the pair-elliptical factor models," Computational Statistics, Springer, vol. 37(3), pages 1495-1522, July.
    9. Fan, Jianqing & Jiang, Bai & Sun, Qiang, 2022. "Bayesian factor-adjusted sparse regression," Journal of Econometrics, Elsevier, vol. 230(1), pages 3-19.
    10. Givord, Pauline & Quantin, Simon & Trevien, Corentin, 2018. "A long-term evaluation of the first generation of French urban enterprise zones," Journal of Urban Economics, Elsevier, vol. 105(C), pages 149-161.
    11. Alain-Philippe Fortin & Patrick Gagliardini & O. Scaillet, 2022. "Eigenvalue tests for the number of latent factors in short panels," Swiss Finance Institute Research Paper Series 22-81, Swiss Finance Institute.
    12. Chuliá, Helena & Garrón, Ignacio & Uribe, Jorge M., 2024. "Daily growth at risk: Financial or real drivers? The answer is not always the same," International Journal of Forecasting, Elsevier, vol. 40(2), pages 762-776.
    13. Wei, Jie & Chen, Hui, 2020. "Determining the number of factors in approximate factor models by twice K-fold cross validation," Economics Letters, Elsevier, vol. 191(C).
    14. Yunjung Kim & Cheolbeom Park, 2020. "Are exchange rates disconnected from macroeconomic variables? Evidence from the factor approach," Empirical Economics, Springer, vol. 58(4), pages 1713-1747, April.
    15. Artūras Juodis & Simas Kučinskas, 2023. "Quantifying noise in survey expectations," Quantitative Economics, Econometric Society, vol. 14(2), pages 609-650, May.
    16. Fan, Jianqing & Liao, Yuan & Shi, Xiaofeng, 2015. "Risks of large portfolios," Journal of Econometrics, Elsevier, vol. 186(2), pages 367-387.
    17. Hansen, Christian & Liao, Yuan, 2019. "The Factor-Lasso And K-Step Bootstrap Approach For Inference In High-Dimensional Economic Applications," Econometric Theory, Cambridge University Press, vol. 35(3), pages 465-509, June.
    18. Mao, Guangyu & Shen, Yan, 2019. "Bubbles or fundamentals? Modeling provincial house prices in China allowing for cross-sectional dependence," China Economic Review, Elsevier, vol. 53(C), pages 53-64.
    19. Han Lin Shang, 2023. "Sieve bootstrapping the memory parameter in long-range dependent stationary functional time series," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 107(3), pages 421-441, September.
    20. Xiaorong Yang & Jia Chen & Degui Li & Runze Li, 2024. "Functional-Coefficient Quantile Regression for Panel Data with Latent Group Structure," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 42(3), pages 1026-1040, July.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:biomet:v:79:y:2023:i:2:p:1187-1200. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0006-341X .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.