IDEAS home Printed from https://ideas.repec.org/a/oup/biomet/v107y2020i3p609-625..html
   My bibliography  Save this article

Sparse semiparametric canonical correlation analysis for data of mixed types

Author

Listed:
  • Grace Yoon
  • Raymond J Carroll
  • Irina Gaynanova

Abstract

SummaryCanonical correlation analysis investigates linear relationships between two sets of variables, but it often works poorly on modern datasets because of high dimensionality and mixed data types such as continuous, binary and zero-inflated. To overcome these challenges, we propose a semiparametric approach to sparse canonical correlation analysis based on the Gaussian copula. The main result of this paper is a truncated latent Gaussian copula model for data with excess zeros, which allows us to derive a rank-based estimator of the latent correlation matrix for mixed variable types without estimation of marginal transformation functions. The resulting canonical correlation analysis method works well in high-dimensional settings, as demonstrated via numerical studies, and when applied to the analysis of association between gene expression and microRNA data from breast cancer patients.

Suggested Citation

  • Grace Yoon & Raymond J Carroll & Irina Gaynanova, 2020. "Sparse semiparametric canonical correlation analysis for data of mixed types," Biometrika, Biometrika Trust, vol. 107(3), pages 609-625.
  • Handle: RePEc:oup:biomet:v:107:y:2020:i:3:p:609-625.
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1093/biomet/asaa007
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bottmer, Lea & Croux, Christophe & Wilms, Ines, 2022. "Sparse regression for large data sets with outliers," European Journal of Operational Research, Elsevier, vol. 297(2), pages 782-794.
    2. Yutong Liu & Toni Darville & Xiaojing Zheng & Quefeng Li, 2023. "Decomposition of variation of mixed variables by a latent mixed Gaussian copula model," Biometrics, The International Biometric Society, vol. 79(2), pages 1187-1200, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:oup:biomet:v:107:y:2020:i:3:p:609-625.. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Oxford University Press (email available below). General contact details of provider: https://academic.oup.com/biomet .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.