IDEAS home Printed from https://ideas.repec.org/a/bla/biomet/v78y2022i4p1579-1591.html
   My bibliography  Save this article

Hierarchical cancer heterogeneity analysis based on histopathological imaging features

Author

Listed:
  • Mingyang Ren
  • Qingzhao Zhang
  • Sanguo Zhang
  • Tingyan Zhong
  • Jian Huang
  • Shuangge Ma

Abstract

In cancer research, supervised heterogeneity analysis has important implications. Such analysis has been traditionally based on clinical/demographic/molecular variables. Recently, histopathological imaging features, which are generated as a byproduct of biopsy, have been shown as effective for modeling cancer outcomes, and a handful of supervised heterogeneity analysis has been conducted based on such features. There are two types of histopathological imaging features, which are extracted based on specific biological knowledge and using automated imaging processing software, respectively. Using both types of histopathological imaging features, our goal is to conduct the first supervised cancer heterogeneity analysis that satisfies a hierarchical structure. That is, the first type of imaging features defines a rough structure, and the second type defines a nested and more refined structure. A penalization approach is developed, which has been motivated by but differs significantly from penalized fusion and sparse group penalization. It has satisfactory statistical and numerical properties. In the analysis of lung adenocarcinoma data, it identifies a heterogeneity structure significantly different from the alternatives and has satisfactory prediction and stability performance.

Suggested Citation

  • Mingyang Ren & Qingzhao Zhang & Sanguo Zhang & Tingyan Zhong & Jian Huang & Shuangge Ma, 2022. "Hierarchical cancer heterogeneity analysis based on histopathological imaging features," Biometrics, The International Biometric Society, vol. 78(4), pages 1579-1591, December.
  • Handle: RePEc:bla:biomet:v:78:y:2022:i:4:p:1579-1591
    DOI: 10.1111/biom.13544
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/biom.13544
    Download Restriction: no

    File URL: https://libkey.io/10.1111/biom.13544?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Khalili, Abbas & Chen, Jiahua, 2007. "Variable Selection in Finite Mixture of Regression Models," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 1025-1038, September.
    2. Liu, Lili & Lin, Lu, 2019. "Subgroup analysis for heterogeneous additive partially linear models and its application to car sales data," Computational Statistics & Data Analysis, Elsevier, vol. 138(C), pages 239-259.
    3. Shujie Ma & Jian Huang, 2017. "A Concave Pairwise Fusion Approach to Subgroup Analysis," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(517), pages 410-423, January.
    4. Jinhan Xie & Yuanyuan Lin & Xiaodong Yan & Niansheng Tang, 2020. "Category-Adaptive Variable Screening for Ultra-High Dimensional Heterogeneous Categorical Data," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 115(530), pages 747-760, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cai, Tingting & Li, Jianbo & Zhou, Qin & Yin, Songlou & Zhang, Riquan, 2024. "Subgroup detection based on partially linear additive individualized model with missing data in response," Computational Statistics & Data Analysis, Elsevier, vol. 192(C).
    2. Zhang, Xiaochen & Zhang, Qingzhao & Ma, Shuangge & Fang, Kuangnan, 2022. "Subgroup analysis for high-dimensional functional regression," Journal of Multivariate Analysis, Elsevier, vol. 192(C).
    3. Pei, Youquan & Peng, Heng & Xu, Jinfeng, 2024. "A latent class Cox model for heterogeneous time-to-event data," Journal of Econometrics, Elsevier, vol. 239(2).
    4. Yan Li & Chun Yu & Yize Zhao & Weixin Yao & Robert H. Aseltine & Kun Chen, 2022. "Pursuing sources of heterogeneity in modeling clustered population," Biometrics, The International Biometric Society, vol. 78(2), pages 716-729, June.
    5. Shao, Lihui & Wu, Jiaqi & Zhang, Weiping & Chen, Yu, 2024. "Integrated subgroup identification from multi-source data," Computational Statistics & Data Analysis, Elsevier, vol. 193(C).
    6. Fang, Kuangnan & Chen, Yuanxing & Ma, Shuangge & Zhang, Qingzhao, 2022. "Biclustering analysis of functionals via penalized fusion," Journal of Multivariate Analysis, Elsevier, vol. 189(C).
    7. Baihua He & Tingyan Zhong & Jian Huang & Yanyan Liu & Qingzhao Zhang & Shuangge Ma, 2021. "Histopathological imaging‐based cancer heterogeneity analysis via penalized fusion with model averaging," Biometrics, The International Biometric Society, vol. 77(4), pages 1397-1408, December.
    8. Wang, Xin & Zhu, Zhengyuan & Zhang, Hao Helen, 2023. "Spatial heterogeneity automatic detection and estimation," Computational Statistics & Data Analysis, Elsevier, vol. 180(C).
    9. Dong, Wei & Xu, Chen & Xie, Jinhan & Tang, Niansheng, 2024. "Tuning-free sparse clustering via alternating hard-thresholding," Journal of Multivariate Analysis, Elsevier, vol. 203(C).
    10. Shuang Zhang & Xingdong Feng, 2022. "Distributed identification of heterogeneous treatment effects," Computational Statistics, Springer, vol. 37(1), pages 57-89, March.
    11. Gustavo Alexis Sabillón & Luiz Gabriel Fernandes Cotrim & Daiane Aparecida Zuanetti, 2023. "A data-driven reversible jump for estimating a finite mixture of regression models," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 32(1), pages 350-369, March.
    12. Lu Tang & Peter X.‐K. Song, 2021. "Poststratification fusion learning in longitudinal data analysis," Biometrics, The International Biometric Society, vol. 77(3), pages 914-928, September.
    13. Yu, Jing & Nummi, Tapio & Pan, Jianxin, 2022. "Mixture regression for longitudinal data based on joint mean–covariance model," Journal of Multivariate Analysis, Elsevier, vol. 190(C).
    14. Devijver, Emilie, 2017. "Joint rank and variable selection for parsimonious estimation in a high-dimensional finite mixture regression model," Journal of Multivariate Analysis, Elsevier, vol. 157(C), pages 1-13.
    15. Lu Tang & Ling Zhou & Peter X. K. Song, 2019. "Fusion learning algorithm to combine partially heterogeneous Cox models," Computational Statistics, Springer, vol. 34(1), pages 395-414, March.
    16. Stéphane Chrétien & Alfred Hero & Hervé Perdry, 2012. "Space alternating penalized Kullback proximal point algorithms for maximizing likelihood with nondifferentiable penalty," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 64(4), pages 791-809, August.
    17. Nicolas Städler & Peter Bühlmann & Sara Geer, 2010. "ℓ 1 -penalization for mixture regression models," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 19(2), pages 209-256, August.
    18. Qifan Song & Guang Cheng, 2020. "Bayesian Fusion Estimation via t Shrinkage," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 82(2), pages 353-385, August.
    19. Yeonwoo Rho & Yun Liu & Hie Joo Ahn, 2020. "Revealing Cluster Structures Based on Mixed Sampling Frequencies," Papers 2004.09770, arXiv.org, revised Feb 2021.
    20. Benjamin G. Stokell & Rajen D. Shah & Ryan J. Tibshirani, 2021. "Modelling high‐dimensional categorical data using nonconvex fusion penalties," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 83(3), pages 579-611, July.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:biomet:v:78:y:2022:i:4:p:1579-1591. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0006-341X .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.