IDEAS home Printed from https://ideas.repec.org/a/bla/biomet/v76y2020i3p924-938.html
   My bibliography  Save this article

A multilevel mixed effects varying coefficient model with multilevel predictors and random effects for modeling hospitalization risk in patients on dialysis

Author

Listed:
  • Yihao Li
  • Danh V. Nguyen
  • Esra Kürüm
  • Connie M. Rhee
  • Yanjun Chen
  • Kamyar Kalantar‐Zadeh
  • Damla Şentürk

Abstract

For patients on dialysis, hospitalizations remain a major risk factor for mortality and morbidity. We use data from a large national database, United States Renal Data System, to model time‐varying effects of hospitalization risk factors as functions of time since initiation of dialysis. To account for the three‐level hierarchical structure in the data where hospitalizations are nested in patients and patients are nested in dialysis facilities, we propose a multilevel mixed effects varying coefficient model (MME‐VCM) where multilevel (patient‐ and facility‐level) random effects are used to model the dependence structure of the data. The proposed MME‐VCM also includes multilevel covariates, where baseline demographics and comorbidities are among the patient‐level factors, and staffing composition and facility size are among the facility‐level risk factors. To address the challenge of high‐dimensional integrals due to the hierarchical structure of the random effects, we propose a novel two‐step approximate EM algorithm based on the fully exponential Laplace approximation. Inference for the varying coefficient functions and variance components is achieved via derivation of the standard errors using score contributions. The finite sample performance of the proposed estimation procedure is studied through simulations.

Suggested Citation

  • Yihao Li & Danh V. Nguyen & Esra Kürüm & Connie M. Rhee & Yanjun Chen & Kamyar Kalantar‐Zadeh & Damla Şentürk, 2020. "A multilevel mixed effects varying coefficient model with multilevel predictors and random effects for modeling hospitalization risk in patients on dialysis," Biometrics, The International Biometric Society, vol. 76(3), pages 924-938, September.
  • Handle: RePEc:bla:biomet:v:76:y:2020:i:3:p:924-938
    DOI: 10.1111/biom.13205
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/biom.13205
    Download Restriction: no

    File URL: https://libkey.io/10.1111/biom.13205?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Jason P. Estes & Danh V. Nguyen & Yanjun Chen & Lorien S. Dalrymple & Connie M. Rhee & Kamyar Kalantar‐Zadeh & Damla Şentürk, 2018. "Rejoinder: Time‐dynamic profiling with application to hospital readmission among patients on dialysis," Biometrics, The International Biometric Society, vol. 74(4), pages 1404-1406, December.
    2. Tutz, Gerhard & Kauermann, Goran, 2003. "Generalized linear random effects models with varying coefficients," Computational Statistics & Data Analysis, Elsevier, vol. 43(1), pages 13-28, May.
    3. Jason P. Estes & Danh V. Nguyen & Lorien S. Dalrymple & Yi Mu & Damla Şentürk, 2014. "Cardiovascular event risk dynamics over time in older patients on dialysis: A generalized multiple-index varying coefficient model approach," Biometrics, The International Biometric Society, vol. 70(3), pages 751-761, September.
    4. Jason P. Estes & Danh V. Nguyen & Yanjun Chen & Lorien S. Dalrymple & Connie M. Rhee & Kamyar Kalantar‐Zadeh & Damla Şentürk, 2018. "Time‐dynamic profiling with application to hospital readmission among patients on dialysis," Biometrics, The International Biometric Society, vol. 74(4), pages 1383-1394, December.
    5. Huaihou Chen & Yuanjia Wang, 2011. "A Penalized Spline Approach to Functional Mixed Effects Model Analysis," Biometrics, The International Biometric Society, vol. 67(3), pages 861-870, September.
    6. Charles E. McCulloch & John M. Neuhaus, 2011. "Prediction of Random Effects in Linear and Generalized Linear Models under Model Misspecification," Biometrics, The International Biometric Society, vol. 67(1), pages 270-279, March.
    7. Dimitris Rizopoulos & Geert Verbeke & Emmanuel Lesaffre, 2009. "Fully exponential Laplace approximations for the joint modelling of survival and longitudinal data," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 71(3), pages 637-654, June.
    8. Daowen Zhang, 2004. "Generalized Linear Mixed Models with Varying Coefficients for Longitudinal Data," Biometrics, The International Biometric Society, vol. 60(1), pages 8-15, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sebastien Haneuse & José Zubizarreta & Sharon‐Lise T. Normand, 2018. "Discussion on “Time‐dynamic profiling with application to hospital readmission among patients on dialysis,” by Jason P. Estes, Danh V. Nguyen, Yanjun Chen, Lorien S. Dalrymple, Connie M. Rhee, Kamyar ," Biometrics, The International Biometric Society, vol. 74(4), pages 1395-1397, December.
    2. Kevin He & Ji Zhu & Jian Kang & Yi Li, 2022. "Stratified Cox models with time‐varying effects for national kidney transplant patients: A new blockwise steepest ascent method," Biometrics, The International Biometric Society, vol. 78(3), pages 1221-1232, September.
    3. Bürgin, Reto & Ritschard, Gilbert, 2015. "Tree-based varying coefficient regression for longitudinal ordinal responses," Computational Statistics & Data Analysis, Elsevier, vol. 86(C), pages 65-80.
    4. Bernardi, Mauro & Costola, Michele, 2019. "High-dimensional sparse financial networks through a regularised regression model," SAFE Working Paper Series 244, Leibniz Institute for Financial Research SAFE.
    5. Zhang, Zili & Charalambous, Christiana & Foster, Peter, 2023. "A Gaussian copula joint model for longitudinal and time-to-event data with random effects," Computational Statistics & Data Analysis, Elsevier, vol. 181(C).
    6. Tang, Nian-Sheng & Tang, An-Min & Pan, Dong-Dong, 2014. "Semiparametric Bayesian joint models of multivariate longitudinal and survival data," Computational Statistics & Data Analysis, Elsevier, vol. 77(C), pages 113-129.
    7. Dimitris Rizopoulos, 2011. "Dynamic Predictions and Prospective Accuracy in Joint Models for Longitudinal and Time-to-Event Data," Biometrics, The International Biometric Society, vol. 67(3), pages 819-829, September.
    8. Karl, Andrew T. & Yang, Yan & Lohr, Sharon L., 2014. "Computation of maximum likelihood estimates for multiresponse generalized linear mixed models with non-nested, correlated random effects," Computational Statistics & Data Analysis, Elsevier, vol. 73(C), pages 146-162.
    9. Francis K. C. Hui & Samuel Müller & Alan H. Welsh, 2021. "Random Effects Misspecification Can Have Severe Consequences for Random Effects Inference in Linear Mixed Models," International Statistical Review, International Statistical Institute, vol. 89(1), pages 186-206, April.
    10. Ali M. Mosammam & Jorge Mateu, 2018. "A penalized likelihood method for nonseparable space–time generalized additive models," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 102(3), pages 333-357, July.
    11. Dwueng-Chwuan Jhwueng, 2023. "A Phylogenetic Regression Model for Studying Trait Evolution on Network," Stats, MDPI, vol. 6(1), pages 1-18, March.
    12. Karl Andrew T., 2012. "The Sensitivity of College Football Rankings to Several Modeling Choices," Journal of Quantitative Analysis in Sports, De Gruyter, vol. 8(3), pages 1-44, October.
    13. Rui Martins, 2022. "A flexible link for joint modelling longitudinal and survival data accounting for individual longitudinal heterogeneity," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 31(1), pages 41-61, March.
    14. Ruiyan Luo & Xin Qi, 2023. "Nonlinear function‐on‐scalar regression via functional universal approximation," Biometrics, The International Biometric Society, vol. 79(4), pages 3319-3331, December.
    15. Andrew T. Karl & Yan Yang & Sharon L. Lohr, 2013. "A Correlated Random Effects Model for Nonignorable Missing Data in Value-Added Assessment of Teacher Effects," Journal of Educational and Behavioral Statistics, , vol. 38(6), pages 577-603, December.
    16. Anders Skrondal & Sophia Rabe-Hesketh, 2022. "The Role of Conditional Likelihoods in Latent Variable Modeling," Psychometrika, Springer;The Psychometric Society, vol. 87(3), pages 799-834, September.
    17. Peter Congdon, 2008. "The need for psychiatric care in England: a spatial factor methodology," Journal of Geographical Systems, Springer, vol. 10(3), pages 217-239, September.
    18. Kevin He & Claudia Dahlerus & Lu Xia & Yanming Li & John D. Kalbfleisch, 2020. "The profile inter‐unit reliability," Biometrics, The International Biometric Society, vol. 76(2), pages 654-663, June.
    19. Philipson, Pete & Hickey, Graeme L. & Crowther, Michael J. & Kolamunnage-Dona, Ruwanthi, 2020. "Faster Monte Carlo estimation of joint models for time-to-event and multivariate longitudinal data," Computational Statistics & Data Analysis, Elsevier, vol. 151(C).
    20. repec:jss:jstsof:35:i09 is not listed on IDEAS
    21. Zhang, Cuihong & Ning, Jing & Cai, Jianwen & Squires, James E. & Belle, Steven H. & Li, Ruosha, 2024. "Dynamic risk score modeling for multiple longitudinal risk factors and survival," Computational Statistics & Data Analysis, Elsevier, vol. 189(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:biomet:v:76:y:2020:i:3:p:924-938. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0006-341X .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.