IDEAS home Printed from https://ideas.repec.org/a/bla/biomet/v78y2022i3p1018-1030.html
   My bibliography  Save this article

Testing for association in multiview network data

Author

Listed:
  • Lucy L. Gao
  • Daniela Witten
  • Jacob Bien

Abstract

In this paper, we consider data consisting of multiple networks, each composed of a different edge set on a common set of nodes. Many models have been proposed for the analysis of such multiview network data under the assumption that the data views are closely related. In this paper, we provide tools for evaluating this assumption. In particular, we ask: given two networks that each follow a stochastic block model, is there an association between the latent community memberships of the nodes in the two networks? To answer this question, we extend the stochastic block model for a single network view to the two‐view setting, and develop a new hypothesis test for the null hypothesis that the latent community memberships in the two data views are independent. We apply our test to protein–protein interaction data from the HINT database. We find evidence of a weak association between the latent community memberships of proteins defined with respect to binary interaction data and the latent community memberships of proteins defined with respect to cocomplex association data. We also extend this proposal to the setting of a network with node covariates. The proposed methods extend readily to three or more network/multivariate data views.

Suggested Citation

  • Lucy L. Gao & Daniela Witten & Jacob Bien, 2022. "Testing for association in multiview network data," Biometrics, The International Biometric Society, vol. 78(3), pages 1018-1030, September.
  • Handle: RePEc:bla:biomet:v:78:y:2022:i:3:p:1018-1030
    DOI: 10.1111/biom.13464
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/biom.13464
    Download Restriction: no

    File URL: https://libkey.io/10.1111/biom.13464?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Phipson Belinda & Smyth Gordon K, 2010. "Permutation P-values Should Never Be Zero: Calculating Exact P-values When Permutations Are Randomly Drawn," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 9(1), pages 1-16, October.
    2. Bailey K. Fosdick & Peter D. Hoff, 2015. "Testing and Modeling Dependencies Between a Network and Nodal Attributes," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 110(511), pages 1047-1056, September.
    3. Hoff P.D. & Raftery A.E. & Handcock M.S., 2002. "Latent Space Approaches to Social Network Analysis," Journal of the American Statistical Association, American Statistical Association, vol. 97, pages 1090-1098, December.
    4. N. Binkiewicz & J. T. Vogelstein & K. Rohe, 2017. "Covariate-assisted spectral clustering," Biometrika, Biometrika Trust, vol. 104(2), pages 361-377.
    5. Yong Chen & Kung-Yee Liang, 2010. "On the asymptotic behaviour of the pseudolikelihood ratio test statistic with boundary problems," Biometrika, Biometrika Trust, vol. 97(3), pages 603-620.
    6. M. E. J. Newman & Aaron Clauset, 2016. "Structure and inference in annotated networks," Nature Communications, Nature, vol. 7(1), pages 1-11, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fengqin Tang & Chunning Wang & Jinxia Su & Yuanyuan Wang, 2020. "Spectral clustering-based community detection using graph distance and node attributes," Computational Statistics, Springer, vol. 35(1), pages 69-94, March.
    2. S Chandna & S C Olhede & P J Wolfe, 2022. "Local linear graphon estimation using covariates [Representations for partially exchangeable arrays of random variables]," Biometrika, Biometrika Trust, vol. 109(3), pages 721-734.
    3. Samrachana Adhikari & Tracy Sweet & Brian Junker, 2021. "Analysis of longitudinal advice‐seeking networks following implementation of high stakes testing," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 184(4), pages 1475-1500, October.
    4. Junhui Cai & Dan Yang & Wu Zhu & Haipeng Shen & Linda Zhao, 2021. "Network regression and supervised centrality estimation," Papers 2111.12921, arXiv.org.
    5. Babkin, Sergii & Stewart, Jonathan R. & Long, Xiaochen & Schweinberger, Michael, 2020. "Large-scale estimation of random graph models with local dependence," Computational Statistics & Data Analysis, Elsevier, vol. 152(C).
    6. Ana-Maria Staicu & Yingxing Li & Ciprian M. Crainiceanu & David Ruppert, 2014. "Likelihood Ratio Tests for Dependent Data with Applications to Longitudinal and Functional Data Analysis," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 41(4), pages 932-949, December.
    7. Yunpeng Zhao & Qing Pan & Chengan Du, 2019. "Logistic regression augmented community detection for network data with application in identifying autism‐related gene pathways," Biometrics, The International Biometric Society, vol. 75(1), pages 222-234, March.
    8. Laleh Tafakori & Armin Pourkhanali & Riccardo Rastelli, 2022. "Measuring systemic risk and contagion in the European financial network," Empirical Economics, Springer, vol. 63(1), pages 345-389, July.
    9. Mark S. Handcock & Adrian E. Raftery & Jeremy M. Tantrum, 2007. "Model‐based clustering for social networks," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 170(2), pages 301-354, March.
    10. Ian E. Fellows & Mark S. Handcock, 2023. "Modeling of networked populations when data is sampled or missing," METRON, Springer;Sapienza Università di Roma, vol. 81(1), pages 21-35, April.
    11. Samrachana Adhikari & Beau Dabbs, 2018. "Social Network Analysis in R: A Software Review," Journal of Educational and Behavioral Statistics, , vol. 43(2), pages 225-253, April.
    12. Masha Shunko & Julie Niederhoff & Yaroslav Rosokha, 2018. "Humans Are Not Machines: The Behavioral Impact of Queueing Design on Service Time," Management Science, INFORMS, vol. 64(1), pages 453-473, January.
    13. Guang Ouyang & Dipak K. Dey & Panpan Zhang, 2020. "Clique-Based Method for Social Network Clustering," Journal of Classification, Springer;The Classification Society, vol. 37(1), pages 254-274, April.
    14. Thanne Mafaziya Nijamdeen & Jean Huge & Hajaniaina Ratsimbazafy & Kodikara Arachchilage Sunanda Kodikara & Farid Dahdouh-Guebas, 2022. "A social network analysis of mangrove management stakeholders in Sri Lanka's Northern Province," ULB Institutional Repository 2013/349602, ULB -- Universite Libre de Bruxelles.
    15. Yuan, Quan & Liu, Binghui, 2021. "Community detection via an efficient nonconvex optimization approach based on modularity," Computational Statistics & Data Analysis, Elsevier, vol. 157(C).
    16. Heather Mathews & Alexander Volfovsky, 2023. "Community informed experimental design," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 32(4), pages 1141-1166, October.
    17. Chung, Jaewon & Bridgeford, Eric & Arroyo, Jesus & Pedigo, Benjamin D. & Saad-Eldin, Ali & Gopalakrishnan, Vivek & Xiang, Liang & Priebe, Carey E. & Vogelstein, Joshua T., 2020. "Statistical Connectomics," OSF Preprints ek4n3, Center for Open Science.
    18. Falk Bräuning & Siem Jan Koopman, 2016. "The dynamic factor network model with an application to global credit risk," Working Papers 16-13, Federal Reserve Bank of Boston.
    19. Jamie Olson & Kathleen Carley, 2013. "Exact and approximate EM estimation of mutually exciting hawkes processes," Statistical Inference for Stochastic Processes, Springer, vol. 16(1), pages 63-80, April.
    20. Chih‐Sheng Hsieh & Lung‐Fei Lee & Vincent Boucher, 2020. "Specification and estimation of network formation and network interaction models with the exponential probability distribution," Quantitative Economics, Econometric Society, vol. 11(4), pages 1349-1390, November.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:biomet:v:78:y:2022:i:3:p:1018-1030. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0006-341X .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.