IDEAS home Printed from https://ideas.repec.org/a/taf/jnlasa/v110y2015i511p1047-1056.html
   My bibliography  Save this article

Testing and Modeling Dependencies Between a Network and Nodal Attributes

Author

Listed:
  • Bailey K. Fosdick
  • Peter D. Hoff

Abstract

Network analysis is often focused on characterizing the dependencies between network relations and node-level attributes. Potential relationships are typically explored by modeling the network as a function of the nodal attributes or by modeling the attributes as a function of the network. These methods require specification of the exact nature of the association between the network and attributes, reduce the network data to a small number of summary statistics, and are unable to provide predictions simultaneously for missing attribute and network information. Existing methods that model the attributes and network jointly also assume the data are fully observed. In this article, we introduce a unified approach to analysis that addresses these shortcomings. We use a previously developed latent variable model to obtain a low-dimensional representation of the network in terms of node-specific network factors. We introduce a novel testing procedure to determine if dependencies exist between the network factors and attributes as a surrogate for a test of dependence between the network and attributes. We also present a joint model for the network relations and attributes, for use if the hypothesis of independence is rejected, which can capture a variety of dependence patterns and be used to make inference and predictions for missing observations.

Suggested Citation

  • Bailey K. Fosdick & Peter D. Hoff, 2015. "Testing and Modeling Dependencies Between a Network and Nodal Attributes," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 110(511), pages 1047-1056, September.
  • Handle: RePEc:taf:jnlasa:v:110:y:2015:i:511:p:1047-1056
    DOI: 10.1080/01621459.2015.1008697
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/01621459.2015.1008697
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/01621459.2015.1008697?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. S Chandna & S C Olhede & P J Wolfe, 2022. "Local linear graphon estimation using covariates [Representations for partially exchangeable arrays of random variables]," Biometrika, Biometrika Trust, vol. 109(3), pages 721-734.
    2. Johan Koskinen & Galina Daraganova, 2022. "Bayesian analysis of social influence," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 185(4), pages 1855-1881, October.
    3. Samrachana Adhikari & Tracy Sweet & Brian Junker, 2021. "Analysis of longitudinal adviceā€seeking networks following implementation of high stakes testing," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 184(4), pages 1475-1500, October.
    4. Ick Hoon Jin & Minjeong Jeon & Michael Schweinberger & Jonghyun Yun & Lizhen Lin, 2022. "Multilevel network item response modelling for discovering differences between innovation and regular school systems in Korea," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 71(5), pages 1225-1244, November.
    5. Lucy L. Gao & Daniela Witten & Jacob Bien, 2022. "Testing for association in multiview network data," Biometrics, The International Biometric Society, vol. 78(3), pages 1018-1030, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:jnlasa:v:110:y:2015:i:511:p:1047-1056. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/UASA20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.