Approximate Bayesian inference for case‐crossover models
Author
Abstract
Suggested Citation
DOI: 10.1111/biom.13329
Download full text from publisher
References listed on IDEAS
- Håvard Rue & Sara Martino & Nicolas Chopin, 2009. "Approximate Bayesian inference for latent Gaussian models by using integrated nested Laplace approximations," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 71(2), pages 319-392, April.
- Carpenter, Bob & Gelman, Andrew & Hoffman, Matthew D. & Lee, Daniel & Goodrich, Ben & Betancourt, Michael & Brubaker, Marcus & Guo, Jiqiang & Li, Peter & Riddell, Allen, 2017. "Stan: A Probabilistic Programming Language," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 76(i01).
- Sara Martino & Rupali Akerkar & Håvard Rue, 2011. "Approximate Bayesian Inference for Survival Models," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 38(3), pages 514-528, September.
- Braun, Michael, 2014. "trustOptim: An R Package for Trust Region Optimization with Sparse Hessians," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 60(i04).
- Finn Lindgren & Håvard Rue, 2008. "On the Second‐Order Random Walk Model for Irregular Locations," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 35(4), pages 691-700, December.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Van Niekerk, Janet & Krainski, Elias & Rustand, Denis & Rue, Håvard, 2023. "A new avenue for Bayesian inference with INLA," Computational Statistics & Data Analysis, Elsevier, vol. 181(C).
- David L. Miller & Richard Glennie & Andrew E. Seaton, 2020. "Understanding the Stochastic Partial Differential Equation Approach to Smoothing," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 25(1), pages 1-16, March.
- Brown, Paul T. & Joshi, Chaitanya & Joe, Stephen & Rue, Håvard, 2021. "A novel method of marginalisation using low discrepancy sequences for integrated nested Laplace approximations," Computational Statistics & Data Analysis, Elsevier, vol. 157(C).
- Martins, Thiago G. & Simpson, Daniel & Lindgren, Finn & Rue, Håvard, 2013. "Bayesian computing with INLA: New features," Computational Statistics & Data Analysis, Elsevier, vol. 67(C), pages 68-83.
- Gael M. Martin & David T. Frazier & Christian P. Robert, 2020. "Computing Bayes: Bayesian Computation from 1763 to the 21st Century," Monash Econometrics and Business Statistics Working Papers 14/20, Monash University, Department of Econometrics and Business Statistics.
- Tafese Ashine & Habte Tadesse Likassa & Ding-Geng Chen, 2024. "Estimating Time-to-Death and Determining Risk Predictors for Heart Failure Patients: Bayesian AFT Shared Frailty Models with the INLA Method," Stats, MDPI, vol. 7(3), pages 1-18, September.
- Guowen Huang & Patrick E. Brown & Sze Hang Fu & Hwashin Hyun Shin, 2022. "Daily mortality/morbidity and air quality: Using multivariate time series with seasonally varying covariances," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 71(1), pages 148-174, January.
- E. Lázaro & C. Armero & V. Gómez-Rubio, 2020. "Approximate Bayesian inference for mixture cure models," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 29(3), pages 750-767, September.
- Medina-Olivares, Victor & Lindgren, Finn & Calabrese, Raffaella & Crook, Jonathan, 2023. "Joint models of multivariate longitudinal outcomes and discrete survival data with INLA: An application to credit repayment behaviour," European Journal of Operational Research, Elsevier, vol. 310(2), pages 860-873.
- Nathan William Bean & Joseph George Ibrahim & Matthew Austin Psioda, 2023. "Bayesian design of multi‐regional clinical trials with time‐to‐event endpoints," Biometrics, The International Biometric Society, vol. 79(4), pages 3586-3598, December.
- Radka Jersakova & James Lomax & James Hetherington & Brieuc Lehmann & George Nicholson & Mark Briers & Chris Holmes, 2022. "Bayesian imputation of COVID‐19 positive test counts for nowcasting under reporting lag," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 71(4), pages 834-860, August.
- Gressani, Oswaldo & Lambert, Philippe, 2016. "Fast Bayesian inference in semi-parametric P-spline cure survival models using Laplace approximations," LIDAM Discussion Papers ISBA 2016041, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
- Birgit Schrödle & Leonhard Held, 2011. "A primer on disease mapping and ecological regression using $${\texttt{INLA}}$$," Computational Statistics, Springer, vol. 26(2), pages 241-258, June.
- Aaron Osgood‐Zimmerman & Jon Wakefield, 2023. "A Statistical Review of Template Model Builder: A Flexible Tool for Spatial Modelling," International Statistical Review, International Statistical Institute, vol. 91(2), pages 318-342, August.
- Linda S. L. Tan, 2021. "Use of model reparametrization to improve variational Bayes," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 83(1), pages 30-57, February.
- Muff, Stefanie & Ott, Manuela & Braun, Julia & Held, Leonhard, 2017. "Bayesian two-component measurement error modelling for survival analysis using INLA—A case study on cardiovascular disease mortality in Switzerland," Computational Statistics & Data Analysis, Elsevier, vol. 113(C), pages 177-193.
- Jinjie Chen & Joon Jin Song & James D. Stamey, 2022. "A Bayesian Hierarchical Spatial Model to Correct for Misreporting in Count Data: Application to State-Level COVID-19 Data in the United States," IJERPH, MDPI, vol. 19(6), pages 1-15, March.
- Gael M. Martin & David T. Frazier & Christian P. Robert, 2021. "Approximating Bayes in the 21st Century," Monash Econometrics and Business Statistics Working Papers 24/21, Monash University, Department of Econometrics and Business Statistics.
- Janet Niekerk & Haakon Bakka & Håvard Rue, 2023. "Stable Non-Linear Generalized Bayesian Joint Models for Survival-Longitudinal Data," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 85(1), pages 102-128, February.
- Gael M. Martin & David T. Frazier & Christian P. Robert, 2022. "Computing Bayes: From Then `Til Now," Monash Econometrics and Business Statistics Working Papers 14/22, Monash University, Department of Econometrics and Business Statistics.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:biomet:v:77:y:2021:i:3:p:785-795. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0006-341X .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.