IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v19y2022i6p3327-d769222.html
   My bibliography  Save this article

A Bayesian Hierarchical Spatial Model to Correct for Misreporting in Count Data: Application to State-Level COVID-19 Data in the United States

Author

Listed:
  • Jinjie Chen

    (Department of Statistical Science, Baylor University, Waco, TX 76798-7140, USA)

  • Joon Jin Song

    (Department of Statistical Science, Baylor University, Waco, TX 76798-7140, USA)

  • James D. Stamey

    (Department of Statistical Science, Baylor University, Waco, TX 76798-7140, USA)

Abstract

The COVID-19 pandemic that began at the end of 2019 has caused hundreds of millions of infections and millions of deaths worldwide. COVID-19 posed a threat to human health and profoundly impacted the global economy and people’s lifestyles. The United States is one of the countries severely affected by the disease. Evidence shows that the spread of COVID-19 was significantly underestimated in the early stages, which prevented governments from adopting effective interventions promptly to curb the spread of the disease. This paper adopts a Bayesian hierarchical model to study the under-reporting of COVID-19 at the state level in the United States as of the end of April 2020. The model examines the effects of different covariates on the under-reporting and accurate incidence rates and considers spatial dependency. In addition to under-reporting (false negatives), we also explore the impact of over-reporting (false positives). Adjusting for misclassification requires adding additional parameters that are not directly identified by the observed data. Informative priors are required. We discuss prior elicitation and include R functions that convert expert information into the appropriate prior distribution.

Suggested Citation

  • Jinjie Chen & Joon Jin Song & James D. Stamey, 2022. "A Bayesian Hierarchical Spatial Model to Correct for Misreporting in Count Data: Application to State-Level COVID-19 Data in the United States," IJERPH, MDPI, vol. 19(6), pages 1-15, March.
  • Handle: RePEc:gam:jijerp:v:19:y:2022:i:6:p:3327-:d:769222
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/19/6/3327/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/19/6/3327/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Carpenter, Bob & Gelman, Andrew & Hoffman, Matthew D. & Lee, Daniel & Goodrich, Ben & Betancourt, Michael & Brubaker, Marcus & Guo, Jiqiang & Li, Peter & Riddell, Allen, 2017. "Stan: A Probabilistic Programming Language," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 76(i01).
    2. Oliver Stoner & Theo Economou & Gabriela Drummond Marques da Silva, 2019. "A Hierarchical Framework for Correcting Under-Reporting in Count Data," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 114(528), pages 1481-1492, October.
    3. Julian Besag & Jeremy York & Annie Mollié, 1991. "Bayesian image restoration, with two applications in spatial statistics," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 43(1), pages 1-20, March.
    4. Hortaçsu, Ali & Liu, Jiarui & Schwieg, Timothy, 2021. "Estimating the fraction of unreported infections in epidemics with a known epicenter: An application to COVID-19," Journal of Econometrics, Elsevier, vol. 220(1), pages 106-129.
    5. Håvard Rue & Sara Martino & Nicolas Chopin, 2009. "Approximate Bayesian inference for latent Gaussian models by using integrated nested Laplace approximations," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 71(2), pages 319-392, April.
    6. Lindgren, Finn & Rue, Håvard, 2015. "Bayesian Spatial Modelling with R-INLA," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 63(i19).
    7. Leonardo Costa Ribeiro & Américo Tristão Bernardes, 2020. "Estimate of underreporting of COVID-19 in Brazil by Acute Respiratory Syndrome hospitalization reports," Notas Técnicas Cedeplar-UFMG 010, Cedeplar, Universidade Federal de Minas Gerais.
    8. Ali Hortaçsu & Jiarui Liu & Timothy Schwieg, 2020. "Estimating the Fraction of Unreported Infections in Epidemics with a Known Epicenter: An Application to COVID-19," Working Papers 2020-37, Becker Friedman Institute for Research In Economics.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Johnson, Blair T. & Sisti, Anthony & Bernstein, Mary & Chen, Kun & Hennessy, Emily A. & Acabchuk, Rebecca L. & Matos, Michaela, 2021. "Community-level factors and incidence of gun violence in the United States, 2014–2017," Social Science & Medicine, Elsevier, vol. 280(C).
    2. Radka Jersakova & James Lomax & James Hetherington & Brieuc Lehmann & George Nicholson & Mark Briers & Chris Holmes, 2022. "Bayesian imputation of COVID‐19 positive test counts for nowcasting under reporting lag," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 71(4), pages 834-860, August.
    3. Aaron Osgood‐Zimmerman & Jon Wakefield, 2023. "A Statistical Review of Template Model Builder: A Flexible Tool for Spatial Modelling," International Statistical Review, International Statistical Institute, vol. 91(2), pages 318-342, August.
    4. William Gonzalez Daza & Renata L. Muylaert & Thadeu Sobral-Souza & Victor Lemes Landeiro, 2023. "Malaria Risk Drivers in the Brazilian Amazon: Land Use—Land Cover Interactions and Biological Diversity," IJERPH, MDPI, vol. 20(15), pages 1-16, August.
    5. Waterman, I. & Marek, L. & Ahuriri-Driscoll, A. & Mohammed, J. & Epton, M. & Hobbs, M., 2024. "Investigating the spatial and temporal variation of vape retailer provision in New Zealand: A cross-sectional and nationwide study," Social Science & Medicine, Elsevier, vol. 349(C).
    6. Chien-Chou Chen & Guo-Jun Lo & Ta-Chien Chan, 2022. "Spatial Analysis on Supply and Demand of Adult Surgical Masks in Taipei Metropolitan Areas in the Early Phase of the COVID-19 Pandemic," IJERPH, MDPI, vol. 19(11), pages 1-12, May.
    7. Ropo E. Ogunsakin & Themba G. Ginindza, 2022. "Bayesian Spatial Modeling of Diabetes and Hypertension: Results from the South Africa General Household Survey," IJERPH, MDPI, vol. 19(15), pages 1-17, July.
    8. Chen, Yewen & Chang, Xiaohui & Luo, Fangzhi & Huang, Hui, 2023. "Additive dynamic models for correcting numerical model outputs," Computational Statistics & Data Analysis, Elsevier, vol. 187(C).
    9. Jamie M. Madden & Simon More & Conor Teljeur & Justin Gleeson & Cathal Walsh & Guy McGrath, 2021. "Population Mobility Trends, Deprivation Index and the Spatio-Temporal Spread of Coronavirus Disease 2019 in Ireland," IJERPH, MDPI, vol. 18(12), pages 1-16, June.
    10. Mabel Morales-Otero & Vicente Núñez-Antón, 2021. "Comparing Bayesian Spatial Conditional Overdispersion and the Besag–York–Mollié Models: Application to Infant Mortality Rates," Mathematics, MDPI, vol. 9(3), pages 1-33, January.
    11. Álvaro Briz‐Redón & Jorge Mateu & Francisco Montes, 2022. "Identifying crime generators and spatially overlapping high‐risk areas through a nonlinear model: A comparison between three cities of the Valencian region (Spain)," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 76(1), pages 97-120, February.
    12. Wang, Craig & Furrer, Reinhard, 2021. "Combining heterogeneous spatial datasets with process-based spatial fusion models: A unifying framework," Computational Statistics & Data Analysis, Elsevier, vol. 161(C).
    13. G. Mateo, Rubén & Aroca-Fernández, María José & Gastón, Aitor & Gómez-Rubio, Virgilio & Saura, Santiago & García-Viñas, Juan Ignacio, 2019. "Looking for an optimal hierarchical approach for ecologically meaningful niche modelling," Ecological Modelling, Elsevier, vol. 409(C), pages 1-1.
    14. Márcio Poletti Laurini, 2017. "A continuous spatio-temporal model for house prices in the USA," The Annals of Regional Science, Springer;Western Regional Science Association, vol. 58(1), pages 235-269, January.
    15. Cho, Daegon & Hwang, Youngdeok & Park, Jongwon, 2018. "More buzz, more vibes: Impact of social media on concert distribution," Journal of Economic Behavior & Organization, Elsevier, vol. 156(C), pages 103-113.
    16. Andre Python & Andreas Bender & Marta Blangiardo & Janine B. Illian & Ying Lin & Baoli Liu & Tim C.D. Lucas & Siwei Tan & Yingying Wen & Davit Svanidze & Jianwei Yin, 2022. "A downscaling approach to compare COVID‐19 count data from databases aggregated at different spatial scales," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 185(1), pages 202-218, January.
    17. Shreosi Sanyal & Thierry Rochereau & Cara Nichole Maesano & Laure Com-Ruelle & Isabella Annesi-Maesano, 2018. "Long-Term Effect of Outdoor Air Pollution on Mortality and Morbidity: A 12-Year Follow-Up Study for Metropolitan France," IJERPH, MDPI, vol. 15(11), pages 1-8, November.
    18. Mayer Alvo & Jingrui Mu, 2023. "COVID-19 Data Analysis Using Bayesian Models and Nonparametric Geostatistical Models," Mathematics, MDPI, vol. 11(6), pages 1-13, March.
    19. Vanessa Santos-Sánchez & Juan Antonio Córdoba-Doña & Javier García-Pérez & Antonio Escolar-Pujolar & Lucia Pozzi & Rebeca Ramis, 2020. "Cancer Mortality and Deprivation in the Proximity of Polluting Industrial Facilities in an Industrial Region of Spain," IJERPH, MDPI, vol. 17(6), pages 1-15, March.
    20. Gael M. Martin & David T. Frazier & Christian P. Robert, 2020. "Computing Bayes: Bayesian Computation from 1763 to the 21st Century," Monash Econometrics and Business Statistics Working Papers 14/20, Monash University, Department of Econometrics and Business Statistics.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:19:y:2022:i:6:p:3327-:d:769222. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.