IDEAS home Printed from https://ideas.repec.org/a/bla/jorssb/v83y2021i1p30-57.html
   My bibliography  Save this article

Use of model reparametrization to improve variational Bayes

Author

Listed:
  • Linda S. L. Tan

Abstract

We propose using model reparametrization to improve variational Bayes inference for hierarchical models whose variables can be classified as global (shared across observations) or local (observation‐specific). Posterior dependence between local and global variables is minimized by applying an invertible affine transformation on the local variables. The functional form of this transformation is deduced by approximating the posterior distribution of each local variable conditional on the global variables by a Gaussian density via a second order Taylor expansion. Variational Bayes inference for the reparametrized model is then obtained using stochastic approximation. Our approach can be readily extended to large datasets via a divide and recombine strategy. Using generalized linear mixed models, we demonstrate that reparametrized variational Bayes (RVB) provides improvements in both accuracy and convergence rate compared to state of the art Gaussian variational approximation methods.

Suggested Citation

  • Linda S. L. Tan, 2021. "Use of model reparametrization to improve variational Bayes," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 83(1), pages 30-57, February.
  • Handle: RePEc:bla:jorssb:v:83:y:2021:i:1:p:30-57
    DOI: 10.1111/rssb.12399
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/rssb.12399
    Download Restriction: no

    File URL: https://libkey.io/10.1111/rssb.12399?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. David M. Blei & Alp Kucukelbir & Jon D. McAuliffe, 2017. "Variational Inference: A Review for Statisticians," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(518), pages 859-877, April.
    2. Carpenter, Bob & Gelman, Andrew & Hoffman, Matthew D. & Lee, Daniel & Goodrich, Ben & Betancourt, Michael & Brubaker, Marcus & Guo, Jiqiang & Li, Peter & Riddell, Allen, 2017. "Stan: A Probabilistic Programming Language," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 76(i01).
    3. Håvard Rue & Sara Martino & Nicolas Chopin, 2009. "Approximate Bayesian inference for latent Gaussian models by using integrated nested Laplace approximations," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 71(2), pages 319-392, April.
    4. Martin J. Crowder, 1978. "Beta‐Binomial Anova for Proportions," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 27(1), pages 34-37, March.
    5. Ormerod, J. T. & Wand, M. P., 2010. "Explaining Variational Approximations," The American Statistician, American Statistical Association, vol. 64(2), pages 140-153.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gael M. Martin & David T. Frazier & Christian P. Robert, 2020. "Computing Bayes: Bayesian Computation from 1763 to the 21st Century," Monash Econometrics and Business Statistics Working Papers 14/20, Monash University, Department of Econometrics and Business Statistics.
    2. Gael M. Martin & David T. Frazier & Christian P. Robert, 2021. "Approximating Bayes in the 21st Century," Monash Econometrics and Business Statistics Working Papers 24/21, Monash University, Department of Econometrics and Business Statistics.
    3. Gael M. Martin & David T. Frazier & Christian P. Robert, 2022. "Computing Bayes: From Then `Til Now," Monash Econometrics and Business Statistics Working Papers 14/22, Monash University, Department of Econometrics and Business Statistics.
    4. Gael M. Martin & David T. Frazier & Ruben Loaiza-Maya & Florian Huber & Gary Koop & John Maheu & Didier Nibbering & Anastasios Panagiotelis, 2023. "Bayesian Forecasting in the 21st Century: A Modern Review," Monash Econometrics and Business Statistics Working Papers 1/23, Monash University, Department of Econometrics and Business Statistics.
    5. Bruno Jacobs & Dennis Fok & Bas Donkers, 2021. "Understanding Large-Scale Dynamic Purchase Behavior," Marketing Science, INFORMS, vol. 40(5), pages 844-870, September.
    6. Martin, Gael M. & Frazier, David T. & Maneesoonthorn, Worapree & Loaiza-Maya, Rubén & Huber, Florian & Koop, Gary & Maheu, John & Nibbering, Didier & Panagiotelis, Anastasios, 2024. "Bayesian forecasting in economics and finance: A modern review," International Journal of Forecasting, Elsevier, vol. 40(2), pages 811-839.
    7. Bansal, Prateek & Krueger, Rico & Bierlaire, Michel & Daziano, Ricardo A. & Rashidi, Taha H., 2020. "Bayesian estimation of mixed multinomial logit models: Advances and simulation-based evaluations," Transportation Research Part B: Methodological, Elsevier, vol. 131(C), pages 124-142.
    8. Loaiza-Maya, Rubén & Smith, Michael Stanley & Nott, David J. & Danaher, Peter J., 2022. "Fast and accurate variational inference for models with many latent variables," Journal of Econometrics, Elsevier, vol. 230(2), pages 339-362.
    9. Youngseon Lee & Seongil Jo & Jaeyong Lee, 2022. "A variational inference for the Lévy adaptive regression with multiple kernels," Computational Statistics, Springer, vol. 37(5), pages 2493-2515, November.
    10. Gary Koop & Dimitris Korobilis, 2023. "Bayesian Dynamic Variable Selection In High Dimensions," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 64(3), pages 1047-1074, August.
    11. Bansal, Prateek & Krueger, Rico & Graham, Daniel J., 2021. "Fast Bayesian estimation of spatial count data models," Computational Statistics & Data Analysis, Elsevier, vol. 157(C).
    12. Kazuhiro Yamaguchi & Kensuke Okada, 2020. "Variational Bayes Inference for the DINA Model," Journal of Educational and Behavioral Statistics, , vol. 45(5), pages 569-597, October.
    13. Korobilis, Dimitris & Koop, Gary, 2018. "Variational Bayes inference in high-dimensional time-varying parameter models," Essex Finance Centre Working Papers 22665, University of Essex, Essex Business School.
    14. Radka Jersakova & James Lomax & James Hetherington & Brieuc Lehmann & George Nicholson & Mark Briers & Chris Holmes, 2022. "Bayesian imputation of COVID‐19 positive test counts for nowcasting under reporting lag," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 71(4), pages 834-860, August.
    15. Daziano, Ricardo A., 2022. "Willingness to delay charging of electric vehicles," Research in Transportation Economics, Elsevier, vol. 94(C).
    16. Aaron Osgood‐Zimmerman & Jon Wakefield, 2023. "A Statistical Review of Template Model Builder: A Flexible Tool for Spatial Modelling," International Statistical Review, International Statistical Institute, vol. 91(2), pages 318-342, August.
    17. Feihong Xia & Rabikar Chatterjee & Jerrold H. May, 2019. "Using Conditional Restricted Boltzmann Machines to Model Complex Consumer Shopping Patterns," Marketing Science, INFORMS, vol. 38(4), pages 711-727, July.
    18. Gefang, Deborah & Koop, Gary & Poon, Aubrey, 2023. "Forecasting using variational Bayesian inference in large vector autoregressions with hierarchical shrinkage," International Journal of Forecasting, Elsevier, vol. 39(1), pages 346-363.
    19. Deborah Gefang & Gary Koop & Aubrey Poon, 2019. "Variational Bayesian Inference in Large Vector Autoregressions with Hierarchical Shrinkage," Economic Statistics Centre of Excellence (ESCoE) Discussion Papers ESCoE DP-2019-07, Economic Statistics Centre of Excellence (ESCoE).
    20. Gunawan, David & Kohn, Robert & Nott, David, 2021. "Variational Bayes approximation of factor stochastic volatility models," International Journal of Forecasting, Elsevier, vol. 37(4), pages 1355-1375.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jorssb:v:83:y:2021:i:1:p:30-57. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/rssssea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.