IDEAS home Printed from https://ideas.repec.org/a/bla/biomet/v76y2020i2p472-483.html
   My bibliography  Save this article

Adjusting for time‐varying confounders in survival analysis using structural nested cumulative survival time models

Author

Listed:
  • Shaun Seaman
  • Oliver Dukes
  • Ruth Keogh
  • Stijn Vansteelandt

Abstract

Accounting for time‐varying confounding when assessing the causal effects of time‐varying exposures on survival time is challenging. Standard survival methods that incorporate time‐varying confounders as covariates generally yield biased effect estimates. Estimators using weighting by inverse probability of exposure can be unstable when confounders are highly predictive of exposure or the exposure is continuous. Structural nested accelerated failure time models (AFTMs) require artificial recensoring, which can cause estimation difficulties. Here, we introduce the structural nested cumulative survival time model (SNCSTM). This model assumes that intervening to set exposure at time t to zero has an additive effect on the subsequent conditional hazard given exposure and confounder histories when all subsequent exposures have already been set to zero. We show how to fit it using standard software for generalized linear models and describe two more efficient, double robust, closed‐form estimators. All three estimators avoid the artificial recensoring of AFTMs and the instability of estimators that use weighting by the inverse probability of exposure. We examine the performance of our estimators using a simulation study and illustrate their use on data from the UK Cystic Fibrosis Registry. The SNCSTM is compared with a recently proposed structural nested cumulative failure time model, and several advantages of the former are identified.

Suggested Citation

  • Shaun Seaman & Oliver Dukes & Ruth Keogh & Stijn Vansteelandt, 2020. "Adjusting for time‐varying confounders in survival analysis using structural nested cumulative survival time models," Biometrics, The International Biometric Society, vol. 76(2), pages 472-483, June.
  • Handle: RePEc:bla:biomet:v:76:y:2020:i:2:p:472-483
    DOI: 10.1111/biom.13158
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/biom.13158
    Download Restriction: no

    File URL: https://libkey.io/10.1111/biom.13158?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Oliver Dukes & Torben Martinussen & Eric J. Tchetgen Tchetgen & Stijn Vansteelandt, 2019. "On doubly robust estimation of the hazard difference," Biometrics, The International Biometric Society, vol. 75(1), pages 100-109, March.
    2. Sally Picciotto & Miguel A. Hernán & John H. Page & Jessica G. Young & James M. Robins, 2012. "Structural Nested Cumulative Failure Time Models to Estimate the Effects of Interventions," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 107(499), pages 886-900, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kara E. Rudolph & Nicholas Williams & Iván Díaz, 2023. "Efficient and flexible estimation of natural direct and indirect effects under intermediate confounding and monotonicity constraints," Biometrics, The International Biometric Society, vol. 79(4), pages 3126-3139, December.
    2. Yasuhiro Hagiwara & Tomohiro Shinozaki & Yutaka Matsuyama, 2020. "G‐estimation of structural nested restricted mean time lost models to estimate effects of time‐varying treatments on a failure time outcome," Biometrics, The International Biometric Society, vol. 76(3), pages 799-810, September.
    3. Torben Martinussen & Stijn Vansteelandt & Eric J. Tchetgen Tchetgen & David M. Zucker, 2017. "Instrumental variables estimation of exposure effects on a time‐to‐event endpoint using structural cumulative survival models," Biometrics, The International Biometric Society, vol. 73(4), pages 1140-1149, December.
    4. Oliver Dukes & Torben Martinussen & Eric J. Tchetgen Tchetgen & Stijn Vansteelandt, 2019. "On doubly robust estimation of the hazard difference," Biometrics, The International Biometric Society, vol. 75(1), pages 100-109, March.
    5. Petersen Maya & Schwab Joshua & Gruber Susan & Blaser Nello & Schomaker Michael & van der Laan Mark, 2014. "Targeted Maximum Likelihood Estimation for Dynamic and Static Longitudinal Marginal Structural Working Models," Journal of Causal Inference, De Gruyter, vol. 2(2), pages 147-185, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:biomet:v:76:y:2020:i:2:p:472-483. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0006-341X .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.