IDEAS home Printed from https://ideas.repec.org/a/bla/biomet/v74y2018i3p797-799.html
   My bibliography  Save this article

Discussion of “quantifying publication bias in meta‐analysis” by Lin et al

Author

Listed:
  • Christopher H. Schmid

Abstract

Inspection and analysis of funnel plots cannot reliably identify publication and reporting bias, the non‐publication of results that are not statistically significant. Instead, researchers should thoroughly and systematically search available information sources such as databases, registries and unpublished reports. Even then, it is not possible to ever know whether a systematic review has uncovered all available studies, but the search can inform attempts to construct plausible statistical models of the missing data mechanism.

Suggested Citation

  • Christopher H. Schmid, 2018. "Discussion of “quantifying publication bias in meta‐analysis” by Lin et al," Biometrics, The International Biometric Society, vol. 74(3), pages 797-799, September.
  • Handle: RePEc:bla:biomet:v:74:y:2018:i:3:p:797-799
    DOI: 10.1111/biom.12816
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/biom.12816
    Download Restriction: no

    File URL: https://libkey.io/10.1111/biom.12816?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. J. Copas, 1999. "What works?: selectivity models and meta‐analysis," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 162(1), pages 95-109.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mengke Li & Yan Fan & Yang Liu & Yukun Liu, 2021. "Diagnostic test meta-analysis by empirical likelihood under a Copas-like selection model," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 84(6), pages 927-947, August.
    2. Sander Greenland, 2005. "Multiple‐bias modelling for analysis of observational data," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 168(2), pages 267-306, March.
    3. Irsova, Zuzana & Bom, Pedro Ricardo Duarte & Havranek, Tomas & Rachinger, Heiko, 2023. "Spurious Precision in Meta-Analysis," MetaArXiv 3qp2w, Center for Open Science.
    4. van Aert, Robbie Cornelis Maria, 2018. "Dissertation R.C.M. van Aert," MetaArXiv eqhjd, Center for Open Science.
    5. Costa-Font, Joan & McGuire, Alistair & Stanley, Tom, 2013. "Publication selection in health policy research: The winner's curse hypothesis," Health Policy, Elsevier, vol. 109(1), pages 78-87.
    6. Ying Yuan & Roderick J. A. Little, 2009. "Meta-Analysis of Studies with Missing Data," Biometrics, The International Biometric Society, vol. 65(2), pages 487-496, June.
    7. Stanley, T. D. & Doucouliagos, Hristos, 2011. "Meta-regression approximations to reduce publication selection bias," Working Papers eco_2011_4, Deakin University, Department of Economics.
    8. Ao Huang & Kosuke Morikawa & Tim Friede & Satoshi Hattori, 2023. "Adjusting for publication bias in meta‐analysis via inverse probability weighting using clinical trial registries," Biometrics, The International Biometric Society, vol. 79(3), pages 2089-2102, September.
    9. Sanghyun Hong & W. Robert Reed, 2020. "Using Monte Carlo Experiments to Select Meta-Analytic Estimators," Working Papers in Economics 20/10, University of Canterbury, Department of Economics and Finance.
    10. van Aert, Robbie Cornelis Maria & van Assen, Marcel A. L. M., 2018. "P-uniform," MetaArXiv zqjr9, Center for Open Science.
    11. Jaime L. Peters & Alex J. Sutton & David R. Jones & Keith R. Abrams & Lesley Rushton & Santiago G. Moreno, 2010. "Assessing publication bias in meta‐analyses in the presence of between‐study heterogeneity," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 173(3), pages 575-591, July.
    12. Guanqun Cao & David Todem & Lijian Yang & Jason P. Fine, 2013. "Evaluating Statistical Hypotheses Using Weakly-Identifiable Estimating Functions," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 40(2), pages 256-273, June.
    13. Alan S. Gerber & Neil Malhotra, 2008. "Publication Bias in Empirical Sociological Research," Sociological Methods & Research, , vol. 37(1), pages 3-30, August.
    14. Jian Qing Shi & John Copas, 2002. "Publication bias and meta‐analysis for 2×2 tables: an average Markov chain Monte Carlo EM algorithm," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 64(2), pages 221-236, May.
    15. Mengke Li & Yukun Liu & Pengfei Li & Jing Qin, 2022. "Empirical likelihood meta-analysis with publication bias correction under Copas-like selection model," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 74(1), pages 93-112, February.
    16. Robbie C M van Aert & Jelte M Wicherts & Marcel A L M van Assen, 2019. "Publication bias examined in meta-analyses from psychology and medicine: A meta-meta-analysis," PLOS ONE, Public Library of Science, vol. 14(4), pages 1-32, April.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:biomet:v:74:y:2018:i:3:p:797-799. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0006-341X .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.