IDEAS home Printed from https://ideas.repec.org/a/bla/biomet/v74y2018i2p694-702.html
   My bibliography  Save this article

Efficiency of two sample tests via the restricted mean survival time for analyzing event time observations

Author

Listed:
  • Lu Tian
  • Haoda Fu
  • Stephen J. Ruberg
  • Hajime Uno
  • Lee†Jen Wei

Abstract

In comparing two treatments with the event time observations, the hazard ratio (HR) estimate is routinely used to quantify the treatment difference. However, this model dependent estimate may be difficult to interpret clinically especially when the proportional hazards (PH) assumption is violated. An alternative estimation procedure for treatment efficacy based on the restricted means survival time or t†year mean survival time (t†MST) has been discussed extensively in the statistical and clinical literature. On the other hand, a statistical test via the HR or its asymptotically equivalent counterpart, the logrank test, is asymptotically distribution†free. In this article, we assess the relative efficiency of the hazard ratio and t†MST tests with respect to the statistical power under various PH and non†PH models theoretically and empirically. When the PH assumption is valid, the t†MST test performs almost as well as the HR test. For non†PH models, the t†MST test can substantially outperform its HR counterpart. On the other hand, the HR test can be powerful when the true difference of two survival functions is quite large at end but not the beginning of the study. Unfortunately, for this case, the HR estimate may not have a simple clinical interpretation for the treatment effect due to the violation of the PH assumption.

Suggested Citation

  • Lu Tian & Haoda Fu & Stephen J. Ruberg & Hajime Uno & Lee†Jen Wei, 2018. "Efficiency of two sample tests via the restricted mean survival time for analyzing event time observations," Biometrics, The International Biometric Society, vol. 74(2), pages 694-702, June.
  • Handle: RePEc:bla:biomet:v:74:y:2018:i:2:p:694-702
    DOI: 10.1111/biom.12770
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/biom.12770
    Download Restriction: no

    File URL: https://libkey.io/10.1111/biom.12770?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Wentao Feng & Abdus S. Wahed, 2008. "Supremum weighted log-rank test and sample size for comparing two-stage adaptive treatment strategies," Biometrika, Biometrika Trust, vol. 95(3), pages 695-707.
    2. Song Yang & Ross Prentice, 2010. "Improved Logrank-Type Tests for Survival Data Using Adaptive Weights," Biometrics, The International Biometric Society, vol. 66(1), pages 30-38, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yingchao Zhong & Douglas E. Schaubel, 2022. "Restricted mean survival time as a function of restriction time," Biometrics, The International Biometric Society, vol. 78(1), pages 192-201, March.
    2. Lu Tian & Hua Jin & Hajime Uno & Ying Lu & Bo Huang & Keaven M. Anderson & LJ Wei, 2020. "On the empirical choice of the time window for restricted mean survival time," Biometrics, The International Biometric Society, vol. 76(4), pages 1157-1166, December.
    3. Marc Buyse & Everardo D. Saad & Tomasz Burzykowski & Julien Péron, 2020. "Assessing Treatment Benefit in Immuno-oncology," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 12(2), pages 83-103, July.
    4. Lu Mao, 2023. "Study design for restricted mean time analysis of recurrent events and death," Biometrics, The International Biometric Society, vol. 79(4), pages 3701-3714, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xiaodong Luo & Hui Quan, 2020. "Some Meaningful Weighted Log-Rank and Weighted Win Loss Statistics," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 12(2), pages 216-224, July.
    2. Kathrin Möllenhoff & Achim Tresch, 2023. "Investigating non-inferiority or equivalence in time-to-event data under non-proportional hazards," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 29(3), pages 483-507, July.
    3. Zhang Qingyang, 2023. "A nonparametric test for comparing survival functions based on restricted distance correlation," Dependence Modeling, De Gruyter, vol. 11(1), pages 1-15.
    4. Grzegorz Wyłupek, 2021. "A permutation test for the two-sample right-censored model," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 73(5), pages 1037-1061, October.
    5. Tang, Xinyu & Melguizo, Maria, 2015. "DTR: An R Package for Estimation and Comparison of Survival Outcomes of Dynamic Treatment," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 65(i07).
    6. Deborah Plana & Geoffrey Fell & Brian M. Alexander & Adam C. Palmer & Peter K. Sorger, 2022. "Cancer patient survival can be parametrized to improve trial precision and reveal time-dependent therapeutic effects," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    7. Marc Buyse & Everardo D. Saad & Tomasz Burzykowski & Julien Péron, 2020. "Assessing Treatment Benefit in Immuno-oncology," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 12(2), pages 83-103, July.
    8. Yukun Liu & Guosheng Yin, 2017. "Partitioned log-rank tests for the overall homogeneity of hazard rate functions," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 23(3), pages 400-425, July.
    9. Jimmy T. Efird, 2023. "The Inverse Log-Rank Test: A Versatile Procedure for Late Separating Survival Curves," IJERPH, MDPI, vol. 20(24), pages 1-23, December.
    10. Tamara Fernández & Nicolás Rivera, 2021. "A reproducing kernel Hilbert space log‐rank test for the two‐sample problem," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 48(4), pages 1384-1432, December.
    11. Jinhui Zhang & Yanlin Shi & Guogui Huang, 2023. "Expected length of stay at residential aged care facilities in Australia: current and future," Journal of Population Research, Springer, vol. 40(4), pages 1-30, December.
    12. Andrea Arfè & Brian Alexander & Lorenzo Trippa, 2021. "Optimality of testing procedures for survival data in the nonproportional hazards setting," Biometrics, The International Biometric Society, vol. 77(2), pages 587-598, June.
    13. Ditzhaus, Marc & Pauly, Markus, 2019. "Wild bootstrap logrank tests with broader power functions for testing superiority," Computational Statistics & Data Analysis, Elsevier, vol. 136(C), pages 1-11.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:biomet:v:74:y:2018:i:2:p:694-702. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0006-341X .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.