IDEAS home Printed from https://ideas.repec.org/a/bla/biomet/v73y2017i4p1453-1463.html
   My bibliography  Save this article

A fast small‐sample kernel independence test for microbiome community‐level association analysis

Author

Listed:
  • Xiang Zhan
  • Anna Plantinga
  • Ni Zhao
  • Michael C. Wu

Abstract

To fully understand the role of microbiome in human health and diseases, researchers are increasingly interested in assessing the relationship between microbiome composition and host genomic data. The dimensionality of the data as well as complex relationships between microbiota and host genomics pose considerable challenges for analysis. In this article, we apply a kernel RV coefficient (KRV) test to evaluate the overall association between host gene expression and microbiome composition. The KRV statistic can capture nonlinear correlations and complex relationships among the individual data types and between gene expression and microbiome composition through measuring general dependency. Testing proceeds via a similar route as existing tests of the generalized RV coefficients and allows for rapid p‐value calculation. Strategies to allow adjustment for confounding effects, which is crucial for avoiding misleading results, and to alleviate the problem of selecting the most favorable kernel are considered. Simulation studies show that KRV is useful in testing statistical independence with finite samples given the kernels are appropriately chosen, and can powerfully identify existing associations between microbiome composition and host genomic data while protecting type I error. We apply the KRV to a microbiome study examining the relationship between host transcriptome and microbiome composition within the context of inflammatory bowel disease and are able to derive new biological insights and provide formal inference on prior qualitative observations.

Suggested Citation

  • Xiang Zhan & Anna Plantinga & Ni Zhao & Michael C. Wu, 2017. "A fast small‐sample kernel independence test for microbiome community‐level association analysis," Biometrics, The International Biometric Society, vol. 73(4), pages 1453-1463, December.
  • Handle: RePEc:bla:biomet:v:73:y:2017:i:4:p:1453-1463
    DOI: 10.1111/biom.12684
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/biom.12684
    Download Restriction: no

    File URL: https://libkey.io/10.1111/biom.12684?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Kazi-Aoual, Frederique & Hitier, Simon & Sabatier, Robert & Lebreton, Jean-Dominique, 1995. "Refined approximations to permutation tests for multivariate inference," Computational Statistics & Data Analysis, Elsevier, vol. 20(6), pages 643-656, December.
    2. P. Robert & Y. Escoufier, 1976. "A Unifying Tool for Linear Multivariate Statistical Methods: The RV‐Coefficient," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 25(3), pages 257-265, November.
    3. Wen‐Yu Hua & Debashis Ghosh, 2015. "Equivalence of kernel machine regression and kernel distance covariance for multidimensional phenotype association studies," Biometrics, The International Biometric Society, vol. 71(3), pages 812-820, September.
    4. Dawei Liu & Xihong Lin & Debashis Ghosh, 2007. "Semiparametric Regression of Multidimensional Genetic Pathway Data: Least-Squares Kernel Machines and Linear Mixed Models," Biometrics, The International Biometric Society, vol. 63(4), pages 1079-1088, December.
    5. Josse, J. & Pagès, J. & Husson, F., 2008. "Testing the significance of the RV coefficient," Computational Statistics & Data Analysis, Elsevier, vol. 53(1), pages 82-91, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bin Guo & Baolin Wu, 2018. "Reader reaction on the fast small‐sample kernel independence test for microbiome community‐level association analysis," Biometrics, The International Biometric Society, vol. 74(3), pages 1120-1124, September.
    2. Sean M Devlin & Axel Martin & Irina Ostrovnaya, 2021. "Identifying prognostic pairwise relationships among bacterial species in microbiome studies," PLOS Computational Biology, Public Library of Science, vol. 17(11), pages 1-12, November.
    3. Rauf Ahmad, M., 2019. "A significance test of the RV coefficient in high dimensions," Computational Statistics & Data Analysis, Elsevier, vol. 131(C), pages 116-130.
    4. Arun Srinivasan & Lingzhou Xue & Xiang Zhan, 2021. "Compositional knockoff filter for high‐dimensional regression analysis of microbiome data," Biometrics, The International Biometric Society, vol. 77(3), pages 984-995, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rauf Ahmad, M., 2019. "A significance test of the RV coefficient in high dimensions," Computational Statistics & Data Analysis, Elsevier, vol. 131(C), pages 116-130.
    2. Bavaud, François, 2023. "Exact first moments of the RV coefficient by invariant orthogonal integration," Journal of Multivariate Analysis, Elsevier, vol. 198(C).
    3. Mayer Claus-Dieter & Lorent Julie & Horgan Graham W, 2011. "Exploratory Analysis of Multiple Omics Datasets Using the Adjusted RV Coefficient," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 10(1), pages 1-27, March.
    4. Patrick Wolf & Tobias Buchmann, 2021. "Analyzing development patterns in research networks and technology," Review of Evolutionary Political Economy, Springer, vol. 2(1), pages 55-81, April.
    5. Parraguez, Pedro & Škec, Stanko & e Carmo, Duarte Oliveira & Maier, Anja, 2020. "Quantifying technological change as a combinatorial process," Technological Forecasting and Social Change, Elsevier, vol. 151(C).
    6. Sergio Camiz & Valério D. Pillar, 2018. "Identifying the Informational/Signal Dimension in Principal Component Analysis," Mathematics, MDPI, vol. 6(11), pages 1-16, November.
    7. Zaili Fang & Inyoung Kim & Jeesun Jung, 2018. "Semiparametric Kernel-Based Regression for Evaluating Interaction Between Pathway Effect and Covariate," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 23(1), pages 129-152, March.
    8. Cling, Jean-Pierre & Delecourt, Clément, 2022. "Interlinkages between the Sustainable Development Goals," World Development Perspectives, Elsevier, vol. 25(C).
    9. Delimiro Visbal-Cadavid & Mónica Martínez-Gómez & Rolando Escorcia-Caballero, 2020. "Exploring University Performance through Multiple Factor Analysis: A Case Study," Sustainability, MDPI, vol. 12(3), pages 1-24, January.
    10. Florence Jacquet & A Aboul-Naga & Bernard Hubert, 2020. "The contribution of ARIMNet to address livestock systems resilience in the Mediterranean region," Post-Print hal-03625860, HAL.
    11. Figueiredo, Adelaide & Figueiredo, Fernanda & Monteiro, Natália P. & Straume, Odd Rune, 2012. "Restructuring in privatised firms: A Statis approach," Structural Change and Economic Dynamics, Elsevier, vol. 23(1), pages 108-116.
    12. Arnab Maity & Xihong Lin, 2011. "Powerful Tests for Detecting a Gene Effect in the Presence of Possible Gene–Gene Interactions Using Garrote Kernel Machines," Biometrics, The International Biometric Society, vol. 67(4), pages 1271-1284, December.
    13. Grothe, Oliver & Schnieders, Julius & Segers, Johan, 2013. "Measuring Association and Dependence Between Random Vectors," LIDAM Discussion Papers ISBA 2013026, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    14. Roberta De Vito & Ruggero Bellio & Lorenzo Trippa & Giovanni Parmigiani, 2019. "Multi‐study factor analysis," Biometrics, The International Biometric Society, vol. 75(1), pages 337-346, March.
    15. Hyodo, Masashi & Nishiyama, Takahiro & Pavlenko, Tatjana, 2020. "Testing for independence of high-dimensional variables: ρV-coefficient based approach," Journal of Multivariate Analysis, Elsevier, vol. 178(C).
    16. Long Qu & Tobias Guennel & Scott L. Marshall, 2013. "Linear Score Tests for Variance Components in Linear Mixed Models and Applications to Genetic Association Studies," Biometrics, The International Biometric Society, vol. 69(4), pages 883-892, December.
    17. Josse, J. & Pagès, J. & Husson, F., 2008. "Testing the significance of the RV coefficient," Computational Statistics & Data Analysis, Elsevier, vol. 53(1), pages 82-91, September.
    18. Wenbin Ruan & Zhenzhou Lu & Pengfei Wei, 2013. "Estimation of conditional moment by moving least squares and its application for importance analysis," Journal of Risk and Reliability, , vol. 227(6), pages 641-650, December.
    19. Carmen C. Rodríguez-Martínez & Mitzi Cubilla-Montilla & Purificación Vicente-Galindo & Purificación Galindo-Villardón, 2023. "X-STATIS: A Multivariate Approach to Characterize the Evolution of E-Participation, from a Global Perspective," Mathematics, MDPI, vol. 11(6), pages 1-15, March.
    20. Teran Hidalgo, Sebastian J. & Wu, Michael C. & Engel, Stephanie M. & Kosorok, Michael R., 2018. "Goodness-of-fit test for nonparametric regression models: Smoothing spline ANOVA models as example," Computational Statistics & Data Analysis, Elsevier, vol. 122(C), pages 135-155.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:biomet:v:73:y:2017:i:4:p:1453-1463. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0006-341X .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.