IDEAS home Printed from https://ideas.repec.org/a/bla/jorssc/v25y1976i3p257-265.html
   My bibliography  Save this article

A Unifying Tool for Linear Multivariate Statistical Methods: The RV‐Coefficient

Author

Listed:
  • P. Robert
  • Y. Escoufier

Abstract

Consider two data matrices on the same sample of n individuals, X(p x n), Y(q x n). From these matrices, geometrical representations of the sample are obtained as two configurations of n points, in Rp and Rq It is shown that the RV‐coefficient (Escoufier, 1970, 1973) can be used as a measure of similarity of the two configurations, taking into account the possibly distinct metrics to be used on them to measure the distances between points. The purpose of this paper is to show that most classical methods of linear multivariate statistical analysis can be interpreted as the search for optimal linear transformations or, equivalently, the search for optimal metrics to apply on two data matrices on the same sample; the optimality is defined in terms of the similarity of the corresponding configurations of points, which, in turn, calls for the maximization of the associated RV‐coefficient. The methods studied are principal components, principal components of instrumental variables, multivariate regression, canonical variables, discriminant analysis; they are differentiated by the possible relationships existing between the two data matrices involved and by additional constraints under which the maximum of RV is to be obtained. It is also shown that the RV‐coefficient can be used as a measure of goodness of a solution to the problem of discarding variables.

Suggested Citation

  • P. Robert & Y. Escoufier, 1976. "A Unifying Tool for Linear Multivariate Statistical Methods: The RV‐Coefficient," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 25(3), pages 257-265, November.
  • Handle: RePEc:bla:jorssc:v:25:y:1976:i:3:p:257-265
    DOI: 10.2307/2347233
    as

    Download full text from publisher

    File URL: https://doi.org/10.2307/2347233
    Download Restriction: no

    File URL: https://libkey.io/10.2307/2347233?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jorssc:v:25:y:1976:i:3:p:257-265. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/rssssea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.