IDEAS home Printed from https://ideas.repec.org/a/bla/biomet/v73y2017i1p334-343.html
   My bibliography  Save this article

Assessment of DPOAE test-retest difference curves via hierarchical Gaussian processes

Author

Listed:
  • Junshu Bao
  • Timothy Hanson
  • Garnett P. McMillan
  • Kristin Knight

Abstract

No abstract is available for this item.

Suggested Citation

  • Junshu Bao & Timothy Hanson & Garnett P. McMillan & Kristin Knight, 2017. "Assessment of DPOAE test-retest difference curves via hierarchical Gaussian processes," Biometrics, The International Biometric Society, vol. 73(1), pages 334-343, March.
  • Handle: RePEc:bla:biomet:v:73:y:2017:i:1:p:334-343
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1111/biom.12550
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. J. Q. Shi & B. Wang & R. Murray-Smith & D. M. Titterington, 2007. "Gaussian Process Functional Regression Modeling for Batch Data," Biometrics, The International Biometric Society, vol. 63(3), pages 714-723, September.
    2. Krivobokova, Tatyana & Kneib, Thomas & Claeskens, Gerda, 2010. "Simultaneous Confidence Bands for Penalized Spline Estimators," Journal of the American Statistical Association, American Statistical Association, vol. 105(490), pages 852-863.
    3. Sudipto Banerjee & Gregg A. Johnson, 2006. "Coregionalized Single- and Multiresolution Spatially Varying Growth Curve Modeling with Application to Weed Growth," Biometrics, The International Biometric Society, vol. 62(3), pages 864-876, September.
    4. G. Yi & J. Q. Shi & T. Choi, 2011. "Penalized Gaussian Process Regression and Classification for High-Dimensional Nonlinear Data," Biometrics, The International Biometric Society, vol. 67(4), pages 1285-1294, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Songhao Wang & Szu Hui Ng & William Benjamin Haskell, 2022. "A Multilevel Simulation Optimization Approach for Quantile Functions," INFORMS Journal on Computing, INFORMS, vol. 34(1), pages 569-585, January.
    2. Gu, Lijie & Wang, Suojin & Yang, Lijian, 2021. "Smooth simultaneous confidence band for the error distribution function in nonparametric regression," Computational Statistics & Data Analysis, Elsevier, vol. 155(C).
    3. Esra Kürüm & Danh V. Nguyen & Qi Qian & Sudipto Banerjee & Connie M. Rhee & Damla Şentürk, 2024. "Spatiotemporal multilevel joint modeling of longitudinal and survival outcomes in end-stage kidney disease," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 30(4), pages 827-852, October.
    4. Wang, Bo & Xu, Aiping, 2019. "Gaussian process methods for nonparametric functional regression with mixed predictors," Computational Statistics & Data Analysis, Elsevier, vol. 131(C), pages 80-90.
    5. Roger Koenker, 2023. "Hotelling tubes, confidence bands and conformal inference," Empirical Economics, Springer, vol. 64(6), pages 2757-2769, June.
    6. G. Yi & J. Q. Shi & T. Choi, 2011. "Penalized Gaussian Process Regression and Classification for High-Dimensional Nonlinear Data," Biometrics, The International Biometric Society, vol. 67(4), pages 1285-1294, December.
    7. Yaeji Lim & Hee-Seok Oh, 2015. "Simultaneous confidence interval for quantile regression," Computational Statistics, Springer, vol. 30(2), pages 345-358, June.
    8. K. De Brabanter & Y. Liu & C. Hua, 2016. "Convergence rates for uniform confidence intervals based on local polynomial regression estimators," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 28(1), pages 31-48, March.
    9. Tao Li & Jinwen Ma, 2023. "Hidden Markov Mixture of Gaussian Process Functional Regression: Utilizing Multi-Scale Structure for Time Series Forecasting," Mathematics, MDPI, vol. 11(5), pages 1-24, March.
    10. Chengxin Gong & Jinwen Ma, 2023. "Automated Model Selection of the Two-Layer Mixtures of Gaussian Process Functional Regressions for Curve Clustering and Prediction," Mathematics, MDPI, vol. 11(12), pages 1-25, June.
    11. Manuel Wiesenfarth & Carlos Matías Hisgen & Thomas Kneib & Carmen Cadarso-Suarez, 2014. "Bayesian Nonparametric Instrumental Variables Regression Based on Penalized Splines and Dirichlet Process Mixtures," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 32(3), pages 468-482, July.
    12. Roland Langrock & Thomas Kneib & Alexander Sohn & Stacy L. DeRuiter, 2015. "Nonparametric inference in hidden Markov models using P-splines," Biometrics, The International Biometric Society, vol. 71(2), pages 520-528, June.
    13. Yang, Suigen & Xue, Liugen & Li, Gaorong, 2014. "Simultaneous confidence band for single-index random effects models with longitudinal data," Statistics & Probability Letters, Elsevier, vol. 85(C), pages 6-14.
    14. Ka Kin Lam & Bo Wang, 2021. "Robust Non-Parametric Mortality and Fertility Modelling and Forecasting: Gaussian Process Regression Approaches," Forecasting, MDPI, vol. 3(1), pages 1-21, March.
    15. Isabel Proença & Stefan Sperlich & Duygu Savaşcı, 2015. "Semi-mixed effects gravity models for bilateral trade," Empirical Economics, Springer, vol. 48(1), pages 361-387, February.
    16. F. S. Nathoo, 2010. "Joint Spatial Modeling of Recurrent Infection and Growth with Processes under Intermittent Observation," Biometrics, The International Biometric Society, vol. 66(2), pages 336-346, June.
    17. Lu, Xiaolei & Kuriki, Satoshi, 2017. "Simultaneous confidence bands for contrasts between several nonlinear regression curves," Journal of Multivariate Analysis, Elsevier, vol. 155(C), pages 83-104.
    18. Peter Pütz & Thomas Kneib, 2018. "A penalized spline estimator for fixed effects panel data models," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 102(2), pages 145-166, April.
    19. Holland, Ashley D., 2017. "Penalized spline estimation in the partially linear model," Journal of Multivariate Analysis, Elsevier, vol. 153(C), pages 211-235.
    20. Katarzyna Reluga & María‐José Lombardía & Stefan Sperlich, 2023. "Simultaneous inference for linear mixed model parameters with an application to small area estimation," International Statistical Review, International Statistical Institute, vol. 91(2), pages 193-217, August.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:biomet:v:73:y:2017:i:1:p:334-343. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0006-341X .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.