IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v11y2023i12p2592-d1164733.html
   My bibliography  Save this article

Automated Model Selection of the Two-Layer Mixtures of Gaussian Process Functional Regressions for Curve Clustering and Prediction

Author

Listed:
  • Chengxin Gong

    (School of Mathematical Sciences and LMAM, Peking University, Beijing 100871, China)

  • Jinwen Ma

    (School of Mathematical Sciences and LMAM, Peking University, Beijing 100871, China)

Abstract

As a reasonable statistical learning model for curve clustering analysis, the two-layer mixtures of Gaussian process functional regressions (TMGPFR) model has been developed to fit the data of sample curves from a number of independent information sources or stochastic processes. Since the sample curves from a certain stochastic process naturally form a curve cluster, the model selection of TMGPFRs, i.e., the selection of the number of mixtures of Gaussian process functional regressions (MGPFRs) in the upper layer, corresponds to the discovery of the cluster number and structure of the curve data. In fact, this is rather challenging because the conventional model selection criteria, such as BIC and cross-validation, cannot lead to a stable result in practice even with a heavy burden of repetitive computation. In this paper, we improve the original TMGPFR model and propose a Bayesian Ying-Yang (BYY) annealing learning algorithm for the parameter learning of the improved model with automated model selection. The experimental results of both synthetic and realistic datasets demonstrate that our proposed algorithm can make correct model selection automatically during parameter learning of the model.

Suggested Citation

  • Chengxin Gong & Jinwen Ma, 2023. "Automated Model Selection of the Two-Layer Mixtures of Gaussian Process Functional Regressions for Curve Clustering and Prediction," Mathematics, MDPI, vol. 11(12), pages 1-25, June.
  • Handle: RePEc:gam:jmathe:v:11:y:2023:i:12:p:2592-:d:1164733
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/11/12/2592/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/11/12/2592/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. J. Q. Shi & B. Wang & R. Murray-Smith & D. M. Titterington, 2007. "Gaussian Process Functional Regression Modeling for Batch Data," Biometrics, The International Biometric Society, vol. 63(3), pages 714-723, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Junshu Bao & Timothy Hanson & Garnett P. McMillan & Kristin Knight, 2017. "Assessment of DPOAE test-retest difference curves via hierarchical Gaussian processes," Biometrics, The International Biometric Society, vol. 73(1), pages 334-343, March.
    2. Ka Kin Lam & Bo Wang, 2021. "Robust Non-Parametric Mortality and Fertility Modelling and Forecasting: Gaussian Process Regression Approaches," Forecasting, MDPI, vol. 3(1), pages 1-21, March.
    3. Jingjing Yang & Dennis D. Cox & Jong Soo Lee & Peng Ren & Taeryon Choi, 2017. "Efficient Bayesian hierarchical functional data analysis with basis function approximations using Gaussian–Wishart processes," Biometrics, The International Biometric Society, vol. 73(4), pages 1082-1091, December.
    4. Yu Peng & Yandong Hou & Yuchen Song & Jingyue Pang & Datong Liu, 2018. "Lithium-Ion Battery Prognostics with Hybrid Gaussian Process Function Regression," Energies, MDPI, vol. 11(6), pages 1-20, June.
    5. Zhou, Jie, 2011. "Maximum likelihood ratio test for the stability of sequence of Gaussian random processes," Computational Statistics & Data Analysis, Elsevier, vol. 55(6), pages 2114-2127, June.
    6. Wang, Bo & Xu, Aiping, 2019. "Gaussian process methods for nonparametric functional regression with mixed predictors," Computational Statistics & Data Analysis, Elsevier, vol. 131(C), pages 80-90.
    7. G. Yi & J. Q. Shi & T. Choi, 2011. "Penalized Gaussian Process Regression and Classification for High-Dimensional Nonlinear Data," Biometrics, The International Biometric Society, vol. 67(4), pages 1285-1294, December.
    8. Tao Li & Jinwen Ma, 2023. "Hidden Markov Mixture of Gaussian Process Functional Regression: Utilizing Multi-Scale Structure for Time Series Forecasting," Mathematics, MDPI, vol. 11(5), pages 1-24, March.
    9. Wang, Zhanfeng & Noh, Maengseok & Lee, Youngjo & Shi, Jian Qing, 2021. "A general robust t-process regression model," Computational Statistics & Data Analysis, Elsevier, vol. 154(C).
    10. Jianfang Jia & Jianyu Liang & Yuanhao Shi & Jie Wen & Xiaoqiong Pang & Jianchao Zeng, 2020. "SOH and RUL Prediction of Lithium-Ion Batteries Based on Gaussian Process Regression with Indirect Health Indicators," Energies, MDPI, vol. 13(2), pages 1-20, January.
    11. Daniel W. Gladish & Ross Darnell & Peter J. Thorburn & Bhakti Haldankar, 2019. "Emulated Multivariate Global Sensitivity Analysis for Complex Computer Models Applied to Agricultural Simulators," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 24(1), pages 130-153, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:11:y:2023:i:12:p:2592-:d:1164733. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.