IDEAS home Printed from https://ideas.repec.org/a/taf/gnstxx/v28y2016i1p31-48.html
   My bibliography  Save this article

Convergence rates for uniform confidence intervals based on local polynomial regression estimators

Author

Listed:
  • K. De Brabanter
  • Y. Liu
  • C. Hua

Abstract

We investigate the convergence rates of uniform bias-corrected confidence intervals for a smooth curve using local polynomial regression for both the interior and boundary region. We discuss the cases when the degree of the polynomial is odd and even. The uniform confidence intervals are based on the volume-of-tube formula modified for biased estimators. We empirically show that the proposed uniform confidence intervals attain, at least approximately, nominal coverage. Finally, we investigate the performance of the volume-of-tube based confidence intervals for independent non-Gaussian errors.

Suggested Citation

  • K. De Brabanter & Y. Liu & C. Hua, 2016. "Convergence rates for uniform confidence intervals based on local polynomial regression estimators," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 28(1), pages 31-48, March.
  • Handle: RePEc:taf:gnstxx:v:28:y:2016:i:1:p:31-48
    DOI: 10.1080/10485252.2015.1113283
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/10485252.2015.1113283
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/10485252.2015.1113283?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Manuel Wiesenfarth & Tatyana Krivobokova & Stephan Klasen & Stefan Sperlich, 2012. "Direct Simultaneous Inference in Additive Models and Its Application to Model Undernutrition," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 107(500), pages 1286-1296, December.
    2. Krivobokova, Tatyana & Kneib, Thomas & Claeskens, Gerda, 2010. "Simultaneous Confidence Bands for Penalized Spline Estimators," Journal of the American Statistical Association, American Statistical Association, vol. 105(490), pages 852-863.
    3. Xia, Yingcun & Li, W. K., 2002. "Asymptotic Behavior of Bandwidth Selected by the Cross-Validation Method for Local Polynomial Fitting," Journal of Multivariate Analysis, Elsevier, vol. 83(2), pages 265-287, November.
    4. Ruppert,David & Wand,M. P. & Carroll,R. J., 2003. "Semiparametric Regression," Cambridge Books, Cambridge University Press, number 9780521785167, October.
    5. Hall, Peter & Titterington, D. M., 1988. "On confidence bands in nonparametric density estimation and regression," Journal of Multivariate Analysis, Elsevier, vol. 27(1), pages 228-254, October.
    6. Song Xi Chen & Yong Song Qin, 2002. "Confidence Intervals Based on Local Linear Smoother," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 29(1), pages 89-99, March.
    7. Härdle, Wolfgang, 1989. "Asymptotic maximal deviation of M-smoothers," Journal of Multivariate Analysis, Elsevier, vol. 29(2), pages 163-179, May.
    8. HÄRDLE, Wolfgang & HALL, Peter & MARRON, Steve, 1992. "Regression smoothing parameters that are not far from their optimum," LIDAM Reprints CORE 978, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    9. Ruppert,David & Wand,M. P. & Carroll,R. J., 2003. "Semiparametric Regression," Cambridge Books, Cambridge University Press, number 9780521780506, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Peter Pütz & Thomas Kneib, 2018. "A penalized spline estimator for fixed effects panel data models," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 102(2), pages 145-166, April.
    2. Peter Pütz & Thomas Kneib, 2016. "A Penalized Spline Estimator for Fixed Effects Panel Data Models," SOEPpapers on Multidisciplinary Panel Data Research 827, DIW Berlin, The German Socio-Economic Panel (SOEP).
    3. Manuel Wiesenfarth & Carlos Matías Hisgen & Thomas Kneib & Carmen Cadarso-Suarez, 2014. "Bayesian Nonparametric Instrumental Variables Regression Based on Penalized Splines and Dirichlet Process Mixtures," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 32(3), pages 468-482, July.
    4. Roland Langrock & Thomas Kneib & Alexander Sohn & Stacy L. DeRuiter, 2015. "Nonparametric inference in hidden Markov models using P-splines," Biometrics, The International Biometric Society, vol. 71(2), pages 520-528, June.
    5. Katarzyna Reluga & María‐José Lombardía & Stefan Sperlich, 2023. "Simultaneous inference for linear mixed model parameters with an application to small area estimation," International Statistical Review, International Statistical Institute, vol. 91(2), pages 193-217, August.
    6. Manuel Wiesenfarth & Tatyana Krivobokova & Stephan Klasen & Stefan Sperlich, 2012. "Direct Simultaneous Inference in Additive Models and Its Application to Model Undernutrition," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 107(500), pages 1286-1296, December.
    7. Lei Gao & Li Wang, 2011. "Security price responses to unexpected earnings: a nonparametric investigation," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 20(2), pages 241-258, June.
    8. Peter Hall & Joel L. Horowitz, 2013. "A simple bootstrap method for constructing nonparametric confidence bands for functions," CeMMAP working papers 29/13, Institute for Fiscal Studies.
    9. Holland, Ashley D., 2017. "Penalized spline estimation in the partially linear model," Journal of Multivariate Analysis, Elsevier, vol. 153(C), pages 211-235.
    10. Lin Zhang & Veerabhadran Baladandayuthapani & Hongxiao Zhu & Keith A. Baggerly & Tadeusz Majewski & Bogdan A. Czerniak & Jeffrey S. Morris, 2016. "Functional CAR Models for Large Spatially Correlated Functional Datasets," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 111(514), pages 772-786, April.
    11. Benjamin Owusu & Bettina Bökemeier & Alfred Greiner, 2023. "Assessing nonlinearities and heterogeneity in debt sustainability analysis: a panel spline approach," Empirical Economics, Springer, vol. 64(3), pages 1315-1346, March.
    12. Yang, Lianqiang & Hong, Yongmiao, 2017. "Adaptive penalized splines for data smoothing," Computational Statistics & Data Analysis, Elsevier, vol. 108(C), pages 70-83.
    13. Nadja Klein & Thomas Kneib & Stefan Lang, 2015. "Bayesian Generalized Additive Models for Location, Scale, and Shape for Zero-Inflated and Overdispersed Count Data," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 110(509), pages 405-419, March.
    14. Zanin, Luca & Marra, Giampiero, 2012. "Assessing the functional relationship between CO2 emissions and economic development using an additive mixed model approach," Economic Modelling, Elsevier, vol. 29(4), pages 1328-1337.
    15. Ni, Xiao & Zhang, Hao Helen & Zhang, Daowen, 2009. "Automatic model selection for partially linear models," Journal of Multivariate Analysis, Elsevier, vol. 100(9), pages 2100-2111, October.
    16. Proietti, Tommaso, 2010. "Trend Estimation," MPRA Paper 21607, University Library of Munich, Germany.
    17. Otto-Sobotka, Fabian & Salvati, Nicola & Ranalli, Maria Giovanna & Kneib, Thomas, 2019. "Adaptive semiparametric M-quantile regression," Econometrics and Statistics, Elsevier, vol. 11(C), pages 116-129.
    18. Javier Parada Gómez Urquiza & Alejandro López-Feldman, 2013. "Poverty dynamics in rural Mexico: What does the future hold?," Ensayos Revista de Economia, Universidad Autonoma de Nuevo Leon, Facultad de Economia, vol. 0(2), pages 55-74, November.
    19. Bethany Everett & David Rehkopf & Richard Rogers, 2013. "The Nonlinear Relationship Between Education and Mortality: An Examination of Cohort, Race/Ethnic, and Gender Differences," Population Research and Policy Review, Springer;Southern Demographic Association (SDA), vol. 32(6), pages 893-917, December.
    20. Liugen Xue, 2010. "Empirical Likelihood Local Polynomial Regression Analysis of Clustered Data," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 37(4), pages 644-663, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:gnstxx:v:28:y:2016:i:1:p:31-48. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/GNST20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.