IDEAS home Printed from https://ideas.repec.org/a/bla/biomet/v71y2015i2p548-555.html
   My bibliography  Save this article

Confidence intervals for intraclass correlation coefficients in a nonlinear dose–response meta-analysis

Author

Listed:
  • Nino Demetrashvili
  • Edwin R. Van den Heuvel

Abstract

No abstract is available for this item.

Suggested Citation

  • Nino Demetrashvili & Edwin R. Van den Heuvel, 2015. "Confidence intervals for intraclass correlation coefficients in a nonlinear dose–response meta-analysis," Biometrics, The International Biometric Society, vol. 71(2), pages 548-555, June.
  • Handle: RePEc:bla:biomet:v:71:y:2015:i:2:p:548-555
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1111/biom.12275
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. C. A. Field & A. H. Welsh, 2007. "Bootstrapping clustered data," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 69(3), pages 369-390, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kartlos Joseph Kachiashvili & David I. Melikdzhanjan, 2019. "Estimators of the Parameters of Beta Distribution," Sankhya B: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 81(2), pages 350-373, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Orth, Walter, 2010. "The predictive accuracy of credit ratings: Measurement and statistical inference," MPRA Paper 30148, University Library of Munich, Germany, revised 16 Feb 2011.
    2. Wen Shi & Xi Chen & Jennifer Shang, 2019. "An Efficient Morris Method-Based Framework for Simulation Factor Screening," INFORMS Journal on Computing, INFORMS, vol. 31(4), pages 745-770, October.
    3. David Roodman & James G. MacKinnon & Morten Ørregaard Nielsen & Matthew D. Webb, 2019. "Fast and wild: Bootstrap inference in Stata using boottest," Stata Journal, StataCorp LP, vol. 19(1), pages 4-60, March.
    4. Mathieu Bunel, 2012. "Evaluer un dispositif sectoriel d'aide à l'emploi : L'exemple des hôtels cafés restaurants de 2004 à 2009," Working Papers halshs-00736693, HAL.
    5. Ling Lan & Dipankar Bandyopadhyay & Somnath Datta, 2017. "Non-parametric regression in clustered multistate current status data with informative cluster size," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 71(1), pages 31-57, January.
    6. Samanta, Mayukh & Welsh, A.H., 2013. "Bootstrapping for highly unbalanced clustered data," Computational Statistics & Data Analysis, Elsevier, vol. 59(C), pages 70-81.
    7. Samira Rousselière & Gaëlle Petit & Thomas Coisnon & Anne Musson & Damien Rousselière, 2022. "A few drinks behind—Alcohol price and income elasticities in Europe: A microeconometric note," Journal of Agricultural Economics, Wiley Blackwell, vol. 73(1), pages 301-315, February.
    8. Coisnon, Thomas & Rousselière, Damien & Rousselière, Samira, 2018. "Information on biodiversity and environmental behaviors: a European study of individual and institutional drivers to adopt sustainable gardening practices," Working Papers 272611, Institut National de la recherche Agronomique (INRA), Departement Sciences Sociales, Agriculture et Alimentation, Espace et Environnement (SAE2).
    9. Robin Van Oirbeek & Emmanuel Lesaffre, 2018. "An Investigation of the Discriminatory Ability of the Clustering Effect of the Frailty Survival Model," Biostatistics and Biometrics Open Access Journal, Juniper Publishers Inc., vol. 6(3), pages 87-98, April.
    10. Mohamed El Alili & Johanna M. van Dongen & Jonas L. Esser & Martijn W. Heymans & Maurits W. van Tulder & Judith E. Bosmans, 2022. "A scoping review of statistical methods for trial‐based economic evaluations: The current state of play," Health Economics, John Wiley & Sons, Ltd., vol. 31(12), pages 2680-2699, December.
    11. O’Shaughnessy, P.Y. & Welsh, A.H., 2018. "Bootstrapping longitudinal data with multiple levels of variation," Computational Statistics & Data Analysis, Elsevier, vol. 124(C), pages 117-131.
    12. Tvedebrink, Torben, 2010. "Overdispersion in allelic counts and θ-correction in forensic genetics," Theoretical Population Biology, Elsevier, vol. 78(3), pages 200-210.
    13. David Roodman, 2023. "Large-Scale Education Reform in General Equilibrium: Regression Discontinuity Evidence from India: Comment," Papers 2303.11956, arXiv.org, revised Sep 2023.
    14. Janice L. Scealy & David Heslop & Jia Liu & Andrew T. A. Wood, 2022. "Directions Old and New: Palaeomagnetism and Fisher (1953) Meet Modern Statistics," International Statistical Review, International Statistical Institute, vol. 90(2), pages 237-258, August.
    15. Mathieu Bunel & Yannick L'Horty, 2011. "Les effets des aides publiques aux Hôtels Cafés Restaurants et leurs interactions," Working Papers halshs-00658460, HAL.
    16. Mathieu Bunel & Yannick L'Horty, 2011. "Les effets des aides publiques aux Hôtels Cafés Restaurants et leurs interactions : Une évaluation sur micro-données d'entreprises," Working Papers halshs-00744905, HAL.
    17. Orth, Walter, 2012. "The predictive accuracy of credit ratings: Measurement and statistical inference," International Journal of Forecasting, Elsevier, vol. 28(1), pages 288-296.
    18. Van Oirbeek, R. & Lesaffre, E., 2012. "Assessing the predictive ability of a multilevel binary regression model," Computational Statistics & Data Analysis, Elsevier, vol. 56(6), pages 1966-1980.
    19. Di Shu & Jessica G. Young & Sengwee Toh & Rui Wang, 2021. "Variance estimation in inverse probability weighted Cox models," Biometrics, The International Biometric Society, vol. 77(3), pages 1101-1117, September.
    20. Rousselière, Damien & Bouchard, Marie J. & Rousselière, Samira, 2024. "How does the social economy contribute to social and environmental innovation? Evidence of direct and indirect effects from a European survey," Research Policy, Elsevier, vol. 53(5).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:biomet:v:71:y:2015:i:2:p:548-555. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0006-341X .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.