IDEAS home Printed from https://ideas.repec.org/a/bla/biomet/v71y2015i1p33-41.html
   My bibliography  Save this article

Minimum clinically important difference in medical studies

Author

Listed:
  • A. S. Hedayat
  • Junhui Wang
  • Tu Xu

Abstract

No abstract is available for this item.

Suggested Citation

  • A. S. Hedayat & Junhui Wang & Tu Xu, 2015. "Minimum clinically important difference in medical studies," Biometrics, The International Biometric Society, vol. 71(1), pages 33-41, March.
  • Handle: RePEc:bla:biomet:v:71:y:2015:i:1:p:33-41
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1111/biom.12251
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wendy Leisenring & Todd Alono & Margaret Sullivan Pepe, 2000. "Comparisons of Predictive Values of Binary Medical Diagnostic Tests for Paired Designs," Biometrics, The International Biometric Society, vol. 56(2), pages 345-351, June.
    2. Li, Youjuan & Liu, Yufeng & Zhu, Ji, 2007. "Quantile Regression in Reproducing Kernel Hilbert Spaces," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 255-268, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Angel M. Morales & Patrick Tarwater & Indika Mallawaarachchi & Alok Kumar Dwivedi & Juan B. Figueroa-Casas, 2015. "Multinomial logistic regression approach for the evaluation of binary diagnostic test in medical research," Statistics in Transition new series, Główny Urząd Statystyczny (Polska), vol. 16(2), pages 203-222, June.
    2. Li, Meng & Wang, Kehui & Maity, Arnab & Staicu, Ana-Maria, 2022. "Inference in functional linear quantile regression," Journal of Multivariate Analysis, Elsevier, vol. 190(C).
    3. Naoto Jinji & Xingyuan Zhang & Shoji Haruna, 2022. "Does Tobin’s q Matter for a Firm’s Choice of Globalization Mode?," Advances in Japanese Business and Economics, in: Deep Integration, Global Firms, and Technology Spillovers, chapter 0, pages 49-69, Springer.
    4. Guangrui Tang & Neng Fan, 2022. "A Survey of Solution Path Algorithms for Regression and Classification Models," Annals of Data Science, Springer, vol. 9(4), pages 749-789, August.
    5. Alexander Aue & Rex C. Y. Cheung & Thomas C. M. Lee & Ming Zhong, 2014. "Segmented Model Selection in Quantile Regression Using the Minimum Description Length Principle," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 109(507), pages 1241-1256, September.
    6. Crambes, Christophe & Gannoun, Ali & Henchiri, Yousri, 2011. "Weak consistency of the Support Vector Machine Quantile Regression approach when covariates are functions," Statistics & Probability Letters, Elsevier, vol. 81(12), pages 1847-1858.
    7. Sungwan Bang & Soo-Heang Eo & Yong Mee Cho & Myoungshic Jhun & HyungJun Cho, 2016. "Non-crossing weighted kernel quantile regression with right censored data," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 22(1), pages 100-121, January.
    8. Chao, Shih-kang & Härdle, Wolfgang Karl & Hien, Pham-thu, 2014. "Credit risk calibration based on CDS spreads," SFB 649 Discussion Papers 2014-026, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    9. Alok Kumar Dwivedi & Indika Mallawaarachchi & Juan B. Figueroa-Casas & Angel M. Morales & Patrick Tarwater, 2015. "Multinomial Logistic Regression Approach For The Evaluation Of Binary Diagnostic Test In Medical Research," Statistics in Transition New Series, Polish Statistical Association, vol. 16(2), pages 203-222, June.
    10. Xingye Qiao & Yufeng Liu, 2009. "Adaptive Weighted Learning for Unbalanced Multicategory Classification," Biometrics, The International Biometric Society, vol. 65(1), pages 159-168, March.
    11. Salaheddine El Adlouni, 2018. "Quantile regression C-vine copula model for spatial extremes," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 94(1), pages 299-317, October.
    12. Songfeng Zheng, 2014. "A generalized Newton algorithm for quantile regression models," Computational Statistics, Springer, vol. 29(6), pages 1403-1426, December.
    13. Robert H. Lyles & John M. Williamson & Hung-Mo Lin & Charles M. Heilig, 2005. "Extending McNemar's Test: Estimation and Inference When Paired Binary Outcome Data Are Misclassified," Biometrics, The International Biometric Society, vol. 61(1), pages 287-294, March.
    14. Wilson Kalisa & Tertsea Igbawua & Fanan Ujoh & Igbalumun S. Aondoakaa & Jean Nepomuscene Namugize & Jiahua Zhang, 2021. "Spatio-temporal variability of dry and wet conditions over East Africa from 1982 to 2015 using quantile regression model," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 106(3), pages 2047-2076, April.
    15. Yu, Dengdeng & Zhang, Li & Mizera, Ivan & Jiang, Bei & Kong, Linglong, 2019. "Sparse wavelet estimation in quantile regression with multiple functional predictors," Computational Statistics & Data Analysis, Elsevier, vol. 136(C), pages 12-29.
    16. Kato, Kengo, 2009. "On the degrees of freedom in shrinkage estimation," Journal of Multivariate Analysis, Elsevier, vol. 100(7), pages 1338-1352, August.
    17. Thelma R. Paris & Valerien O. Pede & Joyce S. Luis & Justin D. McKinley, 2012. "Determinants of Household Income: A Quantile Regression Approach for Four Rice-Producing Areas in the Philippines," Asian Journal of Agriculture and Development, Southeast Asian Regional Center for Graduate Study and Research in Agriculture (SEARCA), vol. 9(2), pages 65-76, December.
    18. Maria Marino & Alessio Farcomeni, 2015. "Linear quantile regression models for longitudinal experiments: an overview," METRON, Springer;Sapienza Università di Roma, vol. 73(2), pages 229-247, August.
    19. Torossian, Léonard & Picheny, Victor & Faivre, Robert & Garivier, Aurélien, 2020. "A review on quantile regression for stochastic computer experiments," Reliability Engineering and System Safety, Elsevier, vol. 201(C).
    20. Xueyan Mei & Zelong Liu & Ayushi Singh & Marcia Lange & Priyanka Boddu & Jingqi Q. X. Gong & Justine Lee & Cody DeMarco & Chendi Cao & Samantha Platt & Ganesh Sivakumar & Benjamin Gross & Mingqian Hua, 2023. "Interstitial lung disease diagnosis and prognosis using an AI system integrating longitudinal data," Nature Communications, Nature, vol. 14(1), pages 1-11, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:biomet:v:71:y:2015:i:1:p:33-41. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0006-341X .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.