IDEAS home Printed from https://ideas.repec.org/a/spr/compst/v29y2014i6p1403-1426.html
   My bibliography  Save this article

A generalized Newton algorithm for quantile regression models

Author

Listed:
  • Songfeng Zheng

Abstract

This paper formulates the quadratic penalty function for the dual problem of the linear programming associated with the $$L_1$$ L 1 constrained linear quantile regression model. We prove that the solution of the original linear programming can be obtained by minimizing the quadratic penalty function, with the formulas derived. The obtained quadratic penalty function has no constraint, thus could be minimized efficiently by a generalized Newton algorithm with Armijo step size. The resulting algorithm is easy to implement, without requiring any sophisticated optimization package other than a linear equation solver. The proposed approach can be generalized to the quantile regression model in reproducing kernel Hilbert space with slight modification. Extensive experiments on simulated data and real-world data show that, the proposed Newton quantile regression algorithms can achieve performance comparable to state-of-the-art. Copyright Springer-Verlag Berlin Heidelberg 2014

Suggested Citation

  • Songfeng Zheng, 2014. "A generalized Newton algorithm for quantile regression models," Computational Statistics, Springer, vol. 29(6), pages 1403-1426, December.
  • Handle: RePEc:spr:compst:v:29:y:2014:i:6:p:1403-1426
    DOI: 10.1007/s00180-014-0498-x
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s00180-014-0498-x
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s00180-014-0498-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Koenker,Roger, 2005. "Quantile Regression," Cambridge Books, Cambridge University Press, number 9780521845731, October.
    2. Koenker, Roger & Park, Beum J., 1996. "An interior point algorithm for nonlinear quantile regression," Journal of Econometrics, Elsevier, vol. 71(1-2), pages 265-283.
    3. Li, Youjuan & Liu, Yufeng & Zhu, Ji, 2007. "Quantile Regression in Reproducing Kernel Hilbert Spaces," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 255-268, March.
    4. Chenxi Li & Ying Wei & Rick Chappell & Xuming He, 2011. "Bent Line Quantile Regression with Application to an Allometric Study of Land Mammals' Speed and Mass," Biometrics, The International Biometric Society, vol. 67(1), pages 242-249, March.
    5. Yuan, Ming, 2006. "GACV for quantile smoothing splines," Computational Statistics & Data Analysis, Elsevier, vol. 50(3), pages 813-829, February.
    6. Koenker, Roger W & Bassett, Gilbert, Jr, 1978. "Regression Quantiles," Econometrica, Econometric Society, vol. 46(1), pages 33-50, January.
    7. Sohn, Insuk & Kim, Sujong & Hwang, Changha & Lee, Jae Won, 2008. "New normalization methods using support vector machine quantile regression approach in microarray analysis," Computational Statistics & Data Analysis, Elsevier, vol. 52(8), pages 4104-4115, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Park, Jinho & Kim, Jeankyung, 2011. "Quantile regression with an epsilon-insensitive loss in a reproducing kernel Hilbert space," Statistics & Probability Letters, Elsevier, vol. 81(1), pages 62-70, January.
    2. Yu, Dengdeng & Zhang, Li & Mizera, Ivan & Jiang, Bei & Kong, Linglong, 2019. "Sparse wavelet estimation in quantile regression with multiple functional predictors," Computational Statistics & Data Analysis, Elsevier, vol. 136(C), pages 12-29.
    3. Park, Jinho, 2017. "Solution path for quantile regression with epsilon-insensitive loss in a reproducing kernel Hilbert space," Statistics & Probability Letters, Elsevier, vol. 126(C), pages 205-211.
    4. Wu, Chaojiang & Yu, Yan, 2014. "Partially linear modeling of conditional quantiles using penalized splines," Computational Statistics & Data Analysis, Elsevier, vol. 77(C), pages 170-187.
    5. Crambes, Christophe & Gannoun, Ali & Henchiri, Yousri, 2013. "Support vector machine quantile regression approach for functional data: Simulation and application studies," Journal of Multivariate Analysis, Elsevier, vol. 121(C), pages 50-68.
    6. Sungwan Bang & Soo-Heang Eo & Yong Mee Cho & Myoungshic Jhun & HyungJun Cho, 2016. "Non-crossing weighted kernel quantile regression with right censored data," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 22(1), pages 100-121, January.
    7. Tang, Yanlin & Song, Xinyuan & Zhu, Zhongyi, 2015. "Threshold effect test in censored quantile regression," Statistics & Probability Letters, Elsevier, vol. 105(C), pages 149-156.
    8. Maria Marino & Alessio Farcomeni, 2015. "Linear quantile regression models for longitudinal experiments: an overview," METRON, Springer;Sapienza Università di Roma, vol. 73(2), pages 229-247, August.
    9. Jooyong Shim & Changha Hwang & Kyungha Seok, 2014. "Composite support vector quantile regression estimation," Computational Statistics, Springer, vol. 29(6), pages 1651-1665, December.
    10. Thomas Q. Pedersen, 2015. "Predictable Return Distributions," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 34(2), pages 114-132, March.
    11. Bang, Sungwan & Jhun, Myoungshic, 2012. "Simultaneous estimation and factor selection in quantile regression via adaptive sup-norm regularization," Computational Statistics & Data Analysis, Elsevier, vol. 56(4), pages 813-826.
    12. Jooyong Shim & Yongtae Kim & Jangtaek Lee & Changha Hwang, 2012. "Estimating value at risk with semiparametric support vector quantile regression," Computational Statistics, Springer, vol. 27(4), pages 685-700, December.
    13. Christophe Crambes & Ali Gannoun & Yousri Henchiri, 2014. "Modelling functional additive quantile regression using support vector machines approach," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 26(4), pages 639-668, December.
    14. Geraci, Marco, 2019. "Modelling and estimation of nonlinear quantile regression with clustered data," Computational Statistics & Data Analysis, Elsevier, vol. 136(C), pages 30-46.
    15. Tian, Yuzhu & Song, Xinyuan, 2020. "Bayesian bridge-randomized penalized quantile regression," Computational Statistics & Data Analysis, Elsevier, vol. 144(C).
    16. Zou, Hui & Yuan, Ming, 2008. "Regularized simultaneous model selection in multiple quantiles regression," Computational Statistics & Data Analysis, Elsevier, vol. 52(12), pages 5296-5304, August.
    17. Machado, José A.F. & Santos Silva, J.M.C. & Wei, Kehai, 2016. "Quantiles, corners, and the extensive margin of trade," European Economic Review, Elsevier, vol. 89(C), pages 73-84.
    18. Alexander Aue & Rex C. Y. Cheung & Thomas C. M. Lee & Ming Zhong, 2014. "Segmented Model Selection in Quantile Regression Using the Minimum Description Length Principle," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 109(507), pages 1241-1256, September.
    19. Crambes, Christophe & Gannoun, Ali & Henchiri, Yousri, 2011. "Weak consistency of the Support Vector Machine Quantile Regression approach when covariates are functions," Statistics & Probability Letters, Elsevier, vol. 81(12), pages 1847-1858.
    20. Chao, Shih-kang & Härdle, Wolfgang Karl & Hien, Pham-thu, 2014. "Credit risk calibration based on CDS spreads," SFB 649 Discussion Papers 2014-026, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:compst:v:29:y:2014:i:6:p:1403-1426. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.