IDEAS home Printed from https://ideas.repec.org/a/bla/biomet/v67y2011i3p996-1006.html
   My bibliography  Save this article

Estimating Mean Cost Using Auxiliary Covariates

Author

Listed:
  • Wenqin Pan
  • Donglin Zeng

Abstract

No abstract is available for this item.

Suggested Citation

  • Wenqin Pan & Donglin Zeng, 2011. "Estimating Mean Cost Using Auxiliary Covariates," Biometrics, The International Biometric Society, vol. 67(3), pages 996-1006, September.
  • Handle: RePEc:bla:biomet:v:67:y:2011:i:3:p:996-1006
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1111/j.1541-0420.2010.01540.x
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. D. Y. Lin, 2000. "Proportional Means Regression for Censored Medical Costs," Biometrics, The International Biometric Society, vol. 56(3), pages 775-778, September.
    2. Bo Lu, 2005. "Propensity Score Matching with Time-Dependent Covariates," Biometrics, The International Biometric Society, vol. 61(3), pages 721-728, September.
    3. Heejung Bang & Anastasios A. Tsiatis, 2002. "Median Regression with Censored Cost Data," Biometrics, The International Biometric Society, vol. 58(3), pages 643-649, September.
    4. Heejung Bang & James M. Robins, 2005. "Doubly Robust Estimation in Missing Data and Causal Inference Models," Biometrics, The International Biometric Society, vol. 61(4), pages 962-973, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hongwei Zhao & Chen Zuo & Shuai Chen & Heejung Bang, 2012. "Nonparametric Inference for Median Costs with Censored Data," Biometrics, The International Biometric Society, vol. 68(3), pages 717-725, September.
    2. Jie Zhou & Xin Chen & Xinyuan Song & Liuquan Sun, 2021. "A joint modeling approach for analyzing marker data in the presence of a terminal event," Biometrics, The International Biometric Society, vol. 77(1), pages 150-161, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cao, Yongxiu & Yu, Jichang, 2023. "Adjusting for unmeasured confounding in survival causal effect using validation data," Computational Statistics & Data Analysis, Elsevier, vol. 180(C).
    2. Jie Zhou & Xin Chen & Xinyuan Song & Liuquan Sun, 2021. "A joint modeling approach for analyzing marker data in the presence of a terminal event," Biometrics, The International Biometric Society, vol. 77(1), pages 150-161, March.
    3. Liu, Lei & Conaway, Mark R. & Knaus, William A. & Bergin, James D., 2008. "A random effects four-part model, with application to correlated medical costs," Computational Statistics & Data Analysis, Elsevier, vol. 52(9), pages 4458-4473, May.
    4. Sant’Anna, Pedro H.C. & Zhao, Jun, 2020. "Doubly robust difference-in-differences estimators," Journal of Econometrics, Elsevier, vol. 219(1), pages 101-122.
    5. Harsh Parikh & Carlos Varjao & Louise Xu & Eric Tchetgen Tchetgen, 2022. "Validating Causal Inference Methods," Papers 2202.04208, arXiv.org, revised Jul 2022.
    6. Ruoxuan Xiong & Allison Koenecke & Michael Powell & Zhu Shen & Joshua T. Vogelstein & Susan Athey, 2021. "Federated Causal Inference in Heterogeneous Observational Data," Papers 2107.11732, arXiv.org, revised Apr 2023.
    7. Hamidou Jawara, 2020. "Access to savings and household welfare evidence from a household survey in The Gambia," African Development Review, African Development Bank, vol. 32(2), pages 138-149, June.
    8. Wei, Kecheng & Qin, Guoyou & Zhang, Jiajia & Sui, Xuemei, 2022. "Doubly robust estimation in causal inference with missing outcomes: With an application to the Aerobics Center Longitudinal Study," Computational Statistics & Data Analysis, Elsevier, vol. 168(C).
    9. Bryan S. Graham & Keisuke Hirano, 2011. "Robustness to Parametric Assumptions in Missing Data Models," American Economic Review, American Economic Association, vol. 101(3), pages 538-543, May.
    10. Jelena Bradic & Weijie Ji & Yuqian Zhang, 2021. "High-dimensional Inference for Dynamic Treatment Effects," Papers 2110.04924, arXiv.org, revised May 2023.
    11. Corder Nathan & Yang Shu, 2020. "Estimating Average Treatment Effects Utilizing Fractional Imputation when Confounders are Subject to Missingness," Journal of Causal Inference, De Gruyter, vol. 8(1), pages 249-271, January.
    12. Verena Lauber & Johanna Storck, 2016. "Helping with the Kids? How Family-Friendly Workplaces Affect Parental Well-Being and Behavior," Discussion Papers of DIW Berlin 1630, DIW Berlin, German Institute for Economic Research.
    13. Jan Marcus, 2014. "Does Job Loss Make You Smoke and Gain Weight?," Economica, London School of Economics and Political Science, vol. 81(324), pages 626-648, October.
    14. L. Tian & J. Liu & Y. Zhao & L. J. Wei, 2004. "Statistical inference based on non-smooth estimating functions," Biometrika, Biometrika Trust, vol. 91(4), pages 943-954, December.
    15. Zetterqvist, Johan & Waernbaum, Ingeborg, 2020. "Semi-parametric estimation of multi-valued treatment effects for the treated:estimating equations and sandwich estimators," Working Paper Series 2020:4, IFAU - Institute for Evaluation of Labour Market and Education Policy.
    16. Görg Holger & Marchal Léa, 2019. "Die Effekte deutscher Direktinvestitionen im Empfängerland vor dem Hintergrund des Leistungsbilanzüberschusses: Empirische Evidenz mit Mikrodaten für Frankreich," Perspektiven der Wirtschaftspolitik, De Gruyter, vol. 20(1), pages 53-69, June.
    17. Peisong Han & Linglong Kong & Jiwei Zhao & Xingcai Zhou, 2019. "A general framework for quantile estimation with incomplete data," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 81(2), pages 305-333, April.
    18. Tran Linh & Petersen Maya & Schwab Joshua & van der Laan Mark J., 2023. "Robust variance estimation and inference for causal effect estimation," Journal of Causal Inference, De Gruyter, vol. 11(1), pages 1-27, January.
    19. Léa Marchal & Clément Nedoncelle, 2019. "Immigrants, occupations and firm export performance," Review of International Economics, Wiley Blackwell, vol. 27(5), pages 1480-1509, November.
    20. Sundaram Rajeshwari & Ma Ling & Ghoshal Subhashis, 2017. "Median Analysis of Repeated Measures Associated with Recurrent Events in Presence of Terminal Event," The International Journal of Biostatistics, De Gruyter, vol. 13(1), pages 1-16, May.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:biomet:v:67:y:2011:i:3:p:996-1006. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0006-341X .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.