IDEAS home Printed from https://ideas.repec.org/a/bla/biomet/v77y2021i1p150-161.html
   My bibliography  Save this article

A joint modeling approach for analyzing marker data in the presence of a terminal event

Author

Listed:
  • Jie Zhou
  • Xin Chen
  • Xinyuan Song
  • Liuquan Sun

Abstract

In many medical studies, markers are contingent on recurrent events and the cumulative markers are usually of interest. However, the recurrent event process is often interrupted by a dependent terminal event, such as death. In this article, we propose a joint modeling approach for analyzing marker data with informative recurrent and terminal events. This approach introduces a shared frailty to specify the explicit dependence structure among the markers, the recurrent, and terminal events. Estimation procedures are developed for the model parameters and the degree of dependence, and a prediction of the covariate‐specific cumulative markers is provided. The finite sample performance of the proposed estimators is examined through simulation studies. An application to a medical cost study of chronic heart failure patients from the University of Virginia Health System is illustrated.

Suggested Citation

  • Jie Zhou & Xin Chen & Xinyuan Song & Liuquan Sun, 2021. "A joint modeling approach for analyzing marker data in the presence of a terminal event," Biometrics, The International Biometric Society, vol. 77(1), pages 150-161, March.
  • Handle: RePEc:bla:biomet:v:77:y:2021:i:1:p:150-161
    DOI: 10.1111/biom.13260
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/biom.13260
    Download Restriction: no

    File URL: https://libkey.io/10.1111/biom.13260?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Kwun Chuen Gary Chan & Mei-Cheng Wang, 2017. "Semiparametric Modeling and Estimation of the Terminal Behavior of Recurrent Marker Processes Before Failure Events," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(517), pages 351-362, January.
    2. D. Y. Lin, 2000. "Proportional Means Regression for Censored Medical Costs," Biometrics, The International Biometric Society, vol. 56(3), pages 775-778, September.
    3. D. Y. Lin & L. J. Wei & I. Yang & Z. Ying, 2000. "Semiparametric regression for the mean and rate functions of recurrent events," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 62(4), pages 711-730.
    4. Liuquan Sun & Xinyuan Song & Jie Zhou & Lei Liu, 2012. "Joint Analysis of Longitudinal Data With Informative Observation Times and a Dependent Terminal Event," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 107(498), pages 688-700, June.
    5. John D. Kalbfleisch & Douglas E. Schaubel & Yining Ye & Qi Gong, 2013. "An Estimating Function Approach to the Analysis of Recurrent and Terminal Events," Biometrics, The International Biometric Society, vol. 69(2), pages 366-374, June.
    6. Yifei Sun & Chiung-Yu Huang & Mei-Cheng Wang, 2017. "Nonparametric Benefit–Risk Assessment Using Marker Process in the Presence of a Terminal Event," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(518), pages 826-836, April.
    7. Wenqin Pan & Donglin Zeng, 2011. "Estimating Mean Cost Using Auxiliary Covariates," Biometrics, The International Biometric Society, vol. 67(3), pages 996-1006, September.
    8. Yijian Huang & Kristin Berry, 2006. "Semiparametric estimation of marginal mark distribution," Biometrika, Biometrika Trust, vol. 93(4), pages 895-910, December.
    9. Heejung Bang & Anastasios A. Tsiatis, 2002. "Median Regression with Censored Cost Data," Biometrics, The International Biometric Society, vol. 58(3), pages 643-649, September.
    10. Qing Cai & Mei‐Cheng Wang & Kwun Chuen Gary Chan, 2017. "Joint modeling of longitudinal, recurrent events and failure time data for survivor's population," Biometrics, The International Biometric Society, vol. 73(4), pages 1150-1160, December.
    11. Huang Y., 2002. "Calibration Regression of Censored Lifetime Medical Cost," Journal of the American Statistical Association, American Statistical Association, vol. 97, pages 318-327, March.
    12. Lei Liu & Xuelin Huang & John O'Quigley, 2008. "Analysis of Longitudinal Data in the Presence of Informative Observational Times and a Dependent Terminal Event, with Application to Medical Cost Data," Biometrics, The International Biometric Society, vol. 64(3), pages 950-958, September.
    13. Yifei Sun & Mei-Cheng Wang, 2017. "Evaluating Utility Measurement From Recurrent Marker Processes in the Presence of Competing Terminal Events," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(518), pages 745-756, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xiaoyu Wang & Liuquan Sun, 2023. "Joint modeling of generalized scale-change models for recurrent event and failure time data," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 29(1), pages 1-33, January.
    2. Miao Han & Liuquan Sun & Yutao Liu & Jun Zhu, 2018. "Joint analysis of recurrent event data with additive–multiplicative hazards model for the terminal event time," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 81(5), pages 523-547, July.
    3. Lianqiang Qu & Liuquan Sun & Xinyuan Song, 2018. "A Joint Modeling Approach for Longitudinal Data with Informative Observation Times and a Terminal Event," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 10(3), pages 609-633, December.
    4. Sundaram Rajeshwari & Ma Ling & Ghoshal Subhashis, 2017. "Median Analysis of Repeated Measures Associated with Recurrent Events in Presence of Terminal Event," The International Journal of Biostatistics, De Gruyter, vol. 13(1), pages 1-16, May.
    5. Kwun Chuen Gary Chan & Mei-Cheng Wang, 2017. "Semiparametric Modeling and Estimation of the Terminal Behavior of Recurrent Marker Processes Before Failure Events," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(517), pages 351-362, January.
    6. Laura M. Yee & Kwun Chuen Gary Chan, 2017. "Nonparametric inference for the joint distribution of recurrent marked variables and recurrent survival time," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 23(2), pages 207-222, April.
    7. Kwun Chuen Gary Chan, 2018. "Commentary: Alignment of time scales and joint models," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 24(4), pages 601-604, October.
    8. Liu, Lei & Conaway, Mark R. & Knaus, William A. & Bergin, James D., 2008. "A random effects four-part model, with application to correlated medical costs," Computational Statistics & Data Analysis, Elsevier, vol. 52(9), pages 4458-4473, May.
    9. Qing Cai & Mei‐Cheng Wang & Kwun Chuen Gary Chan, 2017. "Joint modeling of longitudinal, recurrent events and failure time data for survivor's population," Biometrics, The International Biometric Society, vol. 73(4), pages 1150-1160, December.
    10. Na Cai & Wenbin Lu & Hao Helen Zhang, 2012. "Time-Varying Latent Effect Model for Longitudinal Data with Informative Observation Times," Biometrics, The International Biometric Society, vol. 68(4), pages 1093-1102, December.
    11. Xiaowei Sun & Jieli Ding & Liuquan Sun, 2020. "A semiparametric additive rates model for the weighted composite endpoint of recurrent and terminal events," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 26(3), pages 471-492, July.
    12. Tianyu Zhan & Douglas E. Schaubel, 2019. "Semiparametric temporal process regression of survival-out-of-hospital," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 25(2), pages 322-340, April.
    13. Tianmeng Lyu & Björn Bornkamp & Guenther Mueller‐Velten & Heinz Schmidli, 2023. "Bayesian inference for a principal stratum estimand on recurrent events truncated by death," Biometrics, The International Biometric Society, vol. 79(4), pages 3792-3802, December.
    14. Zhao, Xingqiu & Tong, Xingwei & Sun, Jianguo, 2013. "Robust estimation for panel count data with informative observation times," Computational Statistics & Data Analysis, Elsevier, vol. 57(1), pages 33-40.
    15. Wenqin Pan & Donglin Zeng, 2011. "Estimating Mean Cost Using Auxiliary Covariates," Biometrics, The International Biometric Society, vol. 67(3), pages 996-1006, September.
    16. Shanshan Li, 2016. "Joint modeling of recurrent event processes and intermittently observed time-varying binary covariate processes," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 22(1), pages 145-160, January.
    17. Gongjun Xu & Sy Han Chiou & Chiung-Yu Huang & Mei-Cheng Wang & Jun Yan, 2017. "Joint Scale-Change Models for Recurrent Events and Failure Time," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(518), pages 794-805, April.
    18. Lu Deng & Wendy Lou & Nicholas Mitsakakis, 2019. "Modeling right-censored medical cost data in regression and the effects of covariates," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 28(1), pages 143-155, March.
    19. Liang Zhu & Hui Zhao & Jianguo Sun & Wendy Leisenring & Leslie L. Robison, 2015. "Regression analysis of mixed recurrent-event and panel-count data with additive rate models," Biometrics, The International Biometric Society, vol. 71(1), pages 71-79, March.
    20. Hangjin Jiang & Wen Su & Xingqiu Zhao, 2020. "Robust estimation for panel count data with informative observation times and censoring times," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 26(1), pages 65-84, January.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:biomet:v:77:y:2021:i:1:p:150-161. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0006-341X .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.