IDEAS home Printed from https://ideas.repec.org/a/bla/biomet/v67y2011i1p234-241.html
   My bibliography  Save this article

Multistate Mark–Recapture Model Selection Using Score Tests

Author

Listed:
  • Rachel S. McCrea
  • Byron J. T. Morgan

Abstract

No abstract is available for this item.

Suggested Citation

  • Rachel S. McCrea & Byron J. T. Morgan, 2011. "Multistate Mark–Recapture Model Selection Using Score Tests," Biometrics, The International Biometric Society, vol. 67(1), pages 234-241, March.
  • Handle: RePEc:bla:biomet:v:67:y:2011:i:1:p:234-241
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1111/j.1541-0420.2010.01421.x
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Claeskens,Gerda & Hjort,Nils Lid, 2008. "Model Selection and Model Averaging," Cambridge Books, Cambridge University Press, number 9780521852258, January.
    2. R. King, 2003. "Closed-form likelihoods for Arnason--Schwarz models," Biometrika, Biometrika Trust, vol. 90(2), pages 435-444, June.
    3. E. A. Catchpole & P. M. Kgosi & B. J. T. Morgan, 2001. "On the Near-Singularity of Models for Animal Recovery Data," Biometrics, The International Biometric Society, vol. 57(3), pages 720-726, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Besbeas, P.T. & McCrea, R.S. & Morgan, B.J.T., 2022. "Selecting age structure in integrated population models," Ecological Modelling, Elsevier, vol. 473(C).
    2. Rachel S. McCrea & Byron J. T. Morgan & Olivier Gimenez, 2017. "A new strategy for diagnostic model assessment in capture–recapture," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 66(4), pages 815-831, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Diana J. Cole, 2019. "Parameter redundancy and identifiability in hidden Markov models," METRON, Springer;Sapienza Università di Roma, vol. 77(2), pages 105-118, August.
    2. Arthur Novaes de Amorim & Rob Deardon & Vineet Saini, 2021. "A stacked ensemble method for forecasting influenza-like illness visit volumes at emergency departments," PLOS ONE, Public Library of Science, vol. 16(3), pages 1-15, March.
    3. Ivana Lolić & Petar Sorić & Marija Logarušić, 2022. "Economic Policy Uncertainty Index Meets Ensemble Learning," Computational Economics, Springer;Society for Computational Economics, vol. 60(2), pages 401-437, August.
    4. Kitagawa, Toru & Muris, Chris, 2016. "Model averaging in semiparametric estimation of treatment effects," Journal of Econometrics, Elsevier, vol. 193(1), pages 271-289.
    5. Jeffrey S. Racine & Qi Li & Dalei Yu & Li Zheng, 2023. "Optimal Model Averaging of Mixed-Data Kernel-Weighted Spline Regressions," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 41(4), pages 1251-1261, October.
    6. Messner, Wolfgang, 2023. "The contingency impact of culture on health security capacities for pandemic preparedness: A moderated Bayesian inference analysis," Journal of International Management, Elsevier, vol. 29(5).
    7. Philippe Goulet Coulombe & Maxime Leroux & Dalibor Stevanovic & Stéphane Surprenant, 2022. "How is machine learning useful for macroeconomic forecasting?," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 37(5), pages 920-964, August.
    8. Alexandra Ferreira‐Lopes & Pedro Linhares & Luís Filipe Martins & Tiago Neves Sequeira, 2022. "Quantitative easing and economic growth in Japan: A meta‐analysis," Journal of Economic Surveys, Wiley Blackwell, vol. 36(1), pages 235-268, February.
    9. Davide Fiaschi & Andrea Mario Lavezzi & Angela Parenti, 2020. "Deep and Proximate Determinants of the World Income Distribution," Review of Income and Wealth, International Association for Research in Income and Wealth, vol. 66(3), pages 677-710, September.
    10. Zhang, Xiang & Saelens, Dirk & Roels, Staf, 2022. "Estimating dynamic solar gains from on-site measured data: An ARX modelling approach," Applied Energy, Elsevier, vol. 321(C).
    11. Matthew W. Wheeler & Jose Cortiñas Abrahantes & Marc Aerts & Jeffery S. Gift & Jerry Allen Davis, 2022. "Continuous model averaging for benchmark dose analysis: Averaging over distributional forms," Environmetrics, John Wiley & Sons, Ltd., vol. 33(5), August.
    12. Samuel Müller & Alan H. Welsh, 2010. "On Model Selection Curves," International Statistical Review, International Statistical Institute, vol. 78(2), pages 240-256, August.
    13. Riani, Marco & Atkinson, Anthony Curtis & Corbellini, Aldo & Farcomeni, Alessio & Laurini, Fabrizio, 2024. "Information Criteria for Outlier Detection Avoiding Arbitrary Significance Levels," Econometrics and Statistics, Elsevier, vol. 29(C), pages 189-205.
    14. Fabio Canova & Christian Matthes, 2021. "Dealing with misspecification in structural macroeconometric models," Quantitative Economics, Econometric Society, vol. 12(2), pages 313-350, May.
    15. Chang, Yung-Chi & Enkhjargal, Uguumur & Huang, Chen-I & Lin, Wen-Ling & Ho, Chi-Ming, 2020. "Factors Affecting the Internet Banking Adoption," Jurnal Ekonomi Malaysia, Faculty of Economics and Business, Universiti Kebangsaan Malaysia, vol. 54(3), pages 117-131.
    16. Yu, Jun & Meng, Xiran & Wang, Yaping, 2023. "Optimal designs for semi-parametric dose-response models under random contamination," Computational Statistics & Data Analysis, Elsevier, vol. 178(C).
    17. Egil Ferkingstad & Anders L{o}land & Mathilde Wilhelmsen, 2011. "Causal modeling and inference for electricity markets," Papers 1110.5429, arXiv.org.
    18. Philippe Van Kerm & Seunghee Yu & Chung Choe, 2016. "Decomposing quantile wage gaps: a conditional likelihood approach," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 65(4), pages 507-527, August.
    19. Martin Jullum & Nils Lid Hjort, 2019. "What price semiparametric Cox regression?," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 25(3), pages 406-438, July.
    20. Martínez-Zarzoso, Inmaculada & Maruotti, Antonello, 2011. "The impact of urbanization on CO2 emissions: Evidence from developing countries," Ecological Economics, Elsevier, vol. 70(7), pages 1344-1353, May.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:biomet:v:67:y:2011:i:1:p:234-241. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0006-341X .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.