IDEAS home Printed from https://ideas.repec.org/a/bla/biomet/v62y2006i1p202-210.html
   My bibliography  Save this article

Additive Risk Models for Survival Data with High-Dimensional Covariates

Author

Listed:
  • Shuangge Ma
  • Michael R. Kosorok
  • Jason P. Fine

Abstract

No abstract is available for this item.

Suggested Citation

  • Shuangge Ma & Michael R. Kosorok & Jason P. Fine, 2006. "Additive Risk Models for Survival Data with High-Dimensional Covariates," Biometrics, The International Biometric Society, vol. 62(1), pages 202-210, March.
  • Handle: RePEc:bla:biomet:v:62:y:2006:i:1:p:202-210
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1111/j.1541-0420.2005.00405.x
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Margaret Pepe & Tianxi Cai & Zheng Zhang, 2004. "Combining Predictors for Classification Using the Area Under the ROC Curve," UW Biostatistics Working Paper Series 1021, Berkeley Electronic Press.
    2. Jie Huang & David Harrington, 2002. "Penalized Partial Likelihood Regression for Right-Censored Data with Bootstrap Selection of the Penalty Parameter," Biometrics, The International Biometric Society, vol. 58(4), pages 781-791, December.
    3. Fan J. & Li R., 2001. "Variable Selection via Nonconcave Penalized Likelihood and its Oracle Properties," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 1348-1360, December.
    4. Kollo, T. & Neudecker, H., 1993. "Asymptotics of Eigenvalues and Unit-Length Eigenvectors of Sample Variance and Correlation Matrices," Journal of Multivariate Analysis, Elsevier, vol. 47(2), pages 283-300, November.
    5. Mason, Robert L. & Gunst, Richard F., 1985. "Selecting principal components in regression," Statistics & Probability Letters, Elsevier, vol. 3(6), pages 299-301, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Li Liu & Hao Wang & Yanyan Liu & Jian Huang, 2021. "Model pursuit and variable selection in the additive accelerated failure time model," Statistical Papers, Springer, vol. 62(6), pages 2627-2659, December.
    2. Qu, Lianqiang & Song, Xinyuan & Sun, Liuquan, 2018. "Identification of local sparsity and variable selection for varying coefficient additive hazards models," Computational Statistics & Data Analysis, Elsevier, vol. 125(C), pages 119-135.
    3. Torben Martinussen & Thomas H. Scheike, 2009. "Covariate Selection for the Semiparametric Additive Risk Model," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 36(4), pages 602-619, December.
    4. Sijian Wang & Bin Nan & Ji Zhu & David G. Beer, 2008. "Doubly Penalized Buckley–James Method for Survival Data with High-Dimensional Covariates," Biometrics, The International Biometric Society, vol. 64(1), pages 132-140, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tutz, Gerhard & Pößnecker, Wolfgang & Uhlmann, Lorenz, 2015. "Variable selection in general multinomial logit models," Computational Statistics & Data Analysis, Elsevier, vol. 82(C), pages 207-222.
    2. Dongdong Zhang & Shaohua Pan & Shujun Bi & Defeng Sun, 2023. "Zero-norm regularized problems: equivalent surrogates, proximal MM method and statistical error bound," Computational Optimization and Applications, Springer, vol. 86(2), pages 627-667, November.
    3. Guan, Wei & Gray, Alexander, 2013. "Sparse high-dimensional fractional-norm support vector machine via DC programming," Computational Statistics & Data Analysis, Elsevier, vol. 67(C), pages 136-148.
    4. Margherita Giuzio, 2017. "Genetic algorithm versus classical methods in sparse index tracking," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 40(1), pages 243-256, November.
    5. Chang, Jinyuan & Chen, Song Xi & Chen, Xiaohong, 2015. "High dimensional generalized empirical likelihood for moment restrictions with dependent data," Journal of Econometrics, Elsevier, vol. 185(1), pages 283-304.
    6. Xu, Yang & Zhao, Shishun & Hu, Tao & Sun, Jianguo, 2021. "Variable selection for generalized odds rate mixture cure models with interval-censored failure time data," Computational Statistics & Data Analysis, Elsevier, vol. 156(C).
    7. Alexandre Belloni & Victor Chernozhukov & Denis Chetverikov & Christian Hansen & Kengo Kato, 2018. "High-dimensional econometrics and regularized GMM," CeMMAP working papers CWP35/18, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    8. Emmanouil Androulakis & Christos Koukouvinos & Kalliopi Mylona & Filia Vonta, 2010. "A real survival analysis application via variable selection methods for Cox's proportional hazards model," Journal of Applied Statistics, Taylor & Francis Journals, vol. 37(8), pages 1399-1406.
    9. Meng An & Haixiang Zhang, 2023. "High-Dimensional Mediation Analysis for Time-to-Event Outcomes with Additive Hazards Model," Mathematics, MDPI, vol. 11(24), pages 1-11, December.
    10. Singh, Rakhi & Stufken, John, 2024. "Factor selection in screening experiments by aggregation over random models," Computational Statistics & Data Analysis, Elsevier, vol. 194(C).
    11. Hao Wang & Hao Zeng & Jiashan Wang, 2022. "An extrapolated iteratively reweighted $$\ell _1$$ ℓ 1 method with complexity analysis," Computational Optimization and Applications, Springer, vol. 83(3), pages 967-997, December.
    12. Koki Momoki & Takuma Yoshida, 2024. "Hypothesis testing for varying coefficient models in tail index regression," Statistical Papers, Springer, vol. 65(6), pages 3821-3852, August.
    13. Haixiang Zhang & Jian Huang & Liuquan Sun, 2022. "Projection‐based and cross‐validated estimation in high‐dimensional Cox model," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 49(1), pages 353-372, March.
    14. Linton, Oliver & Seo, Myung Hwan & Whang, Yoon-Jae, 2023. "Testing stochastic dominance with many conditioning variables," Journal of Econometrics, Elsevier, vol. 235(2), pages 507-527.
    15. Lili Pan & Ziyan Luo & Naihua Xiu, 2017. "Restricted Robinson Constraint Qualification and Optimality for Cardinality-Constrained Cone Programming," Journal of Optimization Theory and Applications, Springer, vol. 175(1), pages 104-118, October.
    16. Okhrin, Ostap & Ristig, Alexander & Sheen, Jeffrey R. & Trück, Stefan, 2015. "Conditional systemic risk with penalized copula," SFB 649 Discussion Papers 2015-038, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    17. Michael Hintermüller & Tao Wu, 2014. "A superlinearly convergent R-regularized Newton scheme for variational models with concave sparsity-promoting priors," Computational Optimization and Applications, Springer, vol. 57(1), pages 1-25, January.
    18. Anastasiou, Andreas & Cribben, Ivor & Fryzlewicz, Piotr, 2022. "Cross-covariance isolate detect: a new change-point method for estimating dynamic functional connectivity," LSE Research Online Documents on Economics 112148, London School of Economics and Political Science, LSE Library.
    19. Ni, Xiao & Zhang, Hao Helen & Zhang, Daowen, 2009. "Automatic model selection for partially linear models," Journal of Multivariate Analysis, Elsevier, vol. 100(9), pages 2100-2111, October.
    20. Lei Yang, 2024. "Proximal Gradient Method with Extrapolation and Line Search for a Class of Non-convex and Non-smooth Problems," Journal of Optimization Theory and Applications, Springer, vol. 200(1), pages 68-103, January.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:biomet:v:62:y:2006:i:1:p:202-210. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0006-341X .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.