Model pursuit and variable selection in the additive accelerated failure time model
Author
Abstract
Suggested Citation
DOI: 10.1007/s00362-020-01205-0
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Jing Zhang & Guosheng Yin & Yanyan Liu & Yuanshan Wu, 2018. "Censored cumulative residual independent screening for ultrahigh-dimensional survival data," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 24(2), pages 273-292, April.
- Zou, Hui, 2006. "The Adaptive Lasso and Its Oracle Properties," Journal of the American Statistical Association, American Statistical Association, vol. 101, pages 1418-1429, December.
- Kangning Wang & Lu Lin, 2019. "Robust and efficient estimator for simultaneous model structure identification and variable selection in generalized partial linear varying coefficient models with longitudinal data," Statistical Papers, Springer, vol. 60(5), pages 1649-1676, October.
- Zeng, Donglin & Lin, D.Y., 2007. "Efficient Estimation for the Accelerated Failure Time Model," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 1387-1396, December.
- Stute, W., 1993. "Consistent Estimation Under Random Censorship When Covariables Are Present," Journal of Multivariate Analysis, Elsevier, vol. 45(1), pages 89-103, April.
- Shuangge Ma & Michael R. Kosorok & Jason P. Fine, 2006. "Additive Risk Models for Survival Data with High-Dimensional Covariates," Biometrics, The International Biometric Society, vol. 62(1), pages 202-210, March.
- Heng Lian & Peng Lai & Hua Liang, 2013. "Partially Linear Structure Selection in Cox Models with Varying Coefficients," Biometrics, The International Biometric Society, vol. 69(2), pages 348-357, June.
- A. Antoniadis & I. Gijbels & S. Lambert-Lacroix, 2014. "Penalized estimation in additive varying coefficient models using grouped regularization," Statistical Papers, Springer, vol. 55(3), pages 727-750, August.
- Liu, Yanyan & Zhang, Jing & Zhao, Xingqiu, 2018. "A new nonparametric screening method for ultrahigh-dimensional survival data," Computational Statistics & Data Analysis, Elsevier, vol. 119(C), pages 74-85.
- Newey, Whitney K, 1994.
"The Asymptotic Variance of Semiparametric Estimators,"
Econometrica, Econometric Society, vol. 62(6), pages 1349-1382, November.
- Newey, W.K., 1989. "The Asymptotic Variance Of Semiparametric Estimotors," Papers 346, Princeton, Department of Economics - Econometric Research Program.
- Newey, W.K., 1991. "The Asymptotic Variance of Semiparametric Estimators," Working papers 583, Massachusetts Institute of Technology (MIT), Department of Economics.
- Fan J. & Li R., 2001. "Variable Selection via Nonconcave Penalized Likelihood and its Oracle Properties," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 1348-1360, December.
- N. Neykov & P. Filzmoser & P. Neytchev, 2014. "Ultrahigh dimensional variable selection through the penalized maximum trimmed likelihood estimator," Statistical Papers, Springer, vol. 55(1), pages 187-207, February.
- Sijian Wang & Bin Nan & Ji Zhu & David G. Beer, 2008. "Doubly Penalized Buckley–James Method for Survival Data with High-Dimensional Covariates," Biometrics, The International Biometric Society, vol. 64(1), pages 132-140, March.
- Lam, Clifford & Fan, Jianqing, 2009. "Sparsistency and rates of convergence in large covariance matrix estimation," LSE Research Online Documents on Economics 31540, London School of Economics and Political Science, LSE Library.
- Zhang, Hao Helen & Cheng, Guang & Liu, Yufeng, 2011. "Linear or Nonlinear? Automatic Structure Discovery for Partially Linear Models," Journal of the American Statistical Association, American Statistical Association, vol. 106(495), pages 1099-1112.
- Yichao Wu & Leonard A. Stefanski, 2015. "Automatic structure recovery for additive models," Biometrika, Biometrika Trust, vol. 102(2), pages 381-395.
- Yongxiu Cao & Jian Huang & Yanyan Liu & Xingqiu Zhao, 2016. "Sieve estimation of Cox models with latent structures," Biometrics, The International Biometric Society, vol. 72(4), pages 1086-1097, December.
- Chen, Songnian & Zhou, Yahong & Ji, Yuanyuan, 2018. "Nonparametric identification and estimation of sample selection models under symmetry," Journal of Econometrics, Elsevier, vol. 202(2), pages 148-160.
- N. Neykov & P. Filzmoser & P. Neytchev, 2014. "Erratum to: Ultrahigh dimensional variable selection through the penalized maximum trimmed likelihood estimator," Statistical Papers, Springer, vol. 55(3), pages 917-918, August.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Sumin Hou & Hao Lv, 2023. "A Group MCP Approach for Structure Identification in Non-Parametric Accelerated Failure Time Additive Regression Model," Mathematics, MDPI, vol. 11(22), pages 1-14, November.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Yoshida, Takuma, 2018. "Semiparametric method for model structure discovery in additive regression models," Econometrics and Statistics, Elsevier, vol. 5(C), pages 124-136.
- Jing Zhang & Haibo Zhou & Yanyan Liu & Jianwen Cai, 2021. "Conditional screening for ultrahigh-dimensional survival data in case-cohort studies," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 27(4), pages 632-661, October.
- Heewon Park & Sadanori Konishi, 2017. "Principal component selection via adaptive regularization method and generalized information criterion," Statistical Papers, Springer, vol. 58(1), pages 147-160, March.
- Heng Lian & Peng Lai & Hua Liang, 2013. "Partially Linear Structure Selection in Cox Models with Varying Coefficients," Biometrics, The International Biometric Society, vol. 69(2), pages 348-357, June.
- Jeongjin Lee & Taehwa Choi & Sangbum Choi, 2024. "Censored broken adaptive ridge regression in high-dimension," Computational Statistics, Springer, vol. 39(6), pages 3457-3482, September.
- Ning Li & Hu Yang, 2021. "Nonnegative estimation and variable selection under minimax concave penalty for sparse high-dimensional linear regression models," Statistical Papers, Springer, vol. 62(2), pages 661-680, April.
- Zhihua Sun & Yi Liu & Kani Chen & Gang Li, 2022. "Broken adaptive ridge regression for right-censored survival data," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 74(1), pages 69-91, February.
- Jianbo Li & Yuan Li & Riquan Zhang, 2017. "B spline variable selection for the single index models," Statistical Papers, Springer, vol. 58(3), pages 691-706, September.
- Adriano Zanin Zambom & Gregory J. Matthews, 2021. "Sure independence screening in the presence of missing data," Statistical Papers, Springer, vol. 62(2), pages 817-845, April.
- Dong, Qingkai & Liu, Binxia & Zhao, Hui, 2023. "Weighted least squares model averaging for accelerated failure time models," Computational Statistics & Data Analysis, Elsevier, vol. 184(C).
- Wang Zhu & Wang C.Y., 2010. "Buckley-James Boosting for Survival Analysis with High-Dimensional Biomarker Data," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 9(1), pages 1-33, June.
- Bing-Yi Jing & Zhouping Li & Guangming Pan & Wang Zhou, 2016. "On SURE-Type Double Shrinkage Estimation," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 111(516), pages 1696-1704, October.
- Lian, Heng & Du, Pang & Li, YuanZhang & Liang, Hua, 2014. "Partially linear structure identification in generalized additive models with NP-dimensionality," Computational Statistics & Data Analysis, Elsevier, vol. 80(C), pages 197-208.
- Li, Xinyi & Wang, Li & Nettleton, Dan, 2019. "Sparse model identification and learning for ultra-high-dimensional additive partially linear models," Journal of Multivariate Analysis, Elsevier, vol. 173(C), pages 204-228.
- Yang, Yanlin & Hu, Xuemei & Jiang, Huifeng, 2022. "Group penalized logistic regressions predict up and down trends for stock prices," The North American Journal of Economics and Finance, Elsevier, vol. 59(C).
- Fang Lu & Jing Yang & Xuewen Lu, 2022. "One-step oracle procedure for semi-parametric spatial autoregressive model and its empirical application to Boston housing price data," Empirical Economics, Springer, vol. 62(6), pages 2645-2671, June.
- Qu, Lianqiang & Song, Xinyuan & Sun, Liuquan, 2018. "Identification of local sparsity and variable selection for varying coefficient additive hazards models," Computational Statistics & Data Analysis, Elsevier, vol. 125(C), pages 119-135.
- Qiang Sun & Hongtu Zhu & Yufeng Liu & Joseph G. Ibrahim, 2015. "SPReM: Sparse Projection Regression Model For High-Dimensional Linear Regression," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 110(509), pages 289-302, March.
- Bai, Jushan & Liao, Yuan, 2016. "Efficient estimation of approximate factor models via penalized maximum likelihood," Journal of Econometrics, Elsevier, vol. 191(1), pages 1-18.
- Agboola, Oluwagbenga David & Yu, Han, 2023. "Neighborhood-based cross fitting approach to treatment effects with high-dimensional data," Computational Statistics & Data Analysis, Elsevier, vol. 186(C).
More about this item
Keywords
Additive AFT model; Model pursuit; Variable selection; Penalization; ADMM algorithm;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:stpapr:v:62:y:2021:i:6:d:10.1007_s00362-020-01205-0. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.