IDEAS home Printed from https://ideas.repec.org/a/bla/biomet/v62y2006i1p159-167.html
   My bibliography  Save this article

Flexible Modeling via a Hybrid Estimation Scheme in Generalized Mixed Models for Longitudinal Data

Author

Listed:
  • Tze Leung Lai
  • Mei-Chiung Shih
  • Samuel Po-Shing Wong

Abstract

No abstract is available for this item.

Suggested Citation

  • Tze Leung Lai & Mei-Chiung Shih & Samuel Po-Shing Wong, 2006. "Flexible Modeling via a Hybrid Estimation Scheme in Generalized Mixed Models for Longitudinal Data," Biometrics, The International Biometric Society, vol. 62(1), pages 159-167, March.
  • Handle: RePEc:bla:biomet:v:62:y:2006:i:1:p:159-167
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1111/j.1541-0420.2005.00391.x
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. X. Lin & D. Zhang, 1999. "Inference in generalized additive mixed modelsby using smoothing splines," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 61(2), pages 381-400, April.
    2. Tze Leung Lai, 2003. "A hybrid estimator in nonlinear and generalised linear mixed effects models," Biometrika, Biometrika Trust, vol. 90(4), pages 859-879, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jorge Tovar & Andrés Clavijo & Julián Cárdenas, 2017. "A strategy to predict association football players’ passing skills," Documentos CEDE 15821, Universidad de los Andes, Facultad de Economía, CEDE.
    2. Daowen Zhang, 2004. "Generalized Linear Mixed Models with Varying Coefficients for Longitudinal Data," Biometrics, The International Biometric Society, vol. 60(1), pages 8-15, March.
    3. Zhang, Daowen & Davidian, Marie, 2004. "Likelihood and conditional likelihood inference for generalized additive mixed models for clustered data," Journal of Multivariate Analysis, Elsevier, vol. 91(1), pages 90-106, October.
    4. Umlauf, Nikolaus & Adler, Daniel & Kneib, Thomas & Lang, Stefan & Zeileis, Achim, 2015. "Structured Additive Regression Models: An R Interface to BayesX," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 63(i21).
    5. Nadja Klein & Michel Denuit & Stefan Lang & Thomas Kneib, 2013. "Nonlife Ratemaking and Risk Management with Bayesian Additive Models for Location, Scale and Shape," Working Papers 2013-24, Faculty of Economics and Statistics, Universität Innsbruck.
    6. Hanyu Yang & Runze Li & Robert A. Zucker & Anne Buu, 2016. "Two-stage model for time varying effects of zero-inflated count longitudinal covariates with applications in health behaviour research," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 65(3), pages 431-444, April.
    7. Lang Li & Morton B. Brown & Kyung-Hoon Lee & Suneel Gupta, 2002. "Estimation and Inference for a Spline-Enhanced Population Pharmacokinetic Model," Biometrics, The International Biometric Society, vol. 58(3), pages 601-611, September.
    8. Robert L. Paige & Shan Sun & Keyi Wang, 2009. "Variance Reduction in Smoothing Splines," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 36(1), pages 112-126, March.
    9. Xiao Ni & Daowen Zhang & Hao Helen Zhang, 2010. "Variable Selection for Semiparametric Mixed Models in Longitudinal Studies," Biometrics, The International Biometric Society, vol. 66(1), pages 79-88, March.
    10. Xiaojun Xu & Fengfeng Ma & Kangying Lu & Baoqi Zhu & Shuaichen Li & Kangqi Liu & Qianmin Chen & Qingfen Li & Cheng Deng, 2023. "Estimation of Biomass Dynamics and Allocation in Chinese Fir Trees Using Tree Ring Analysis in Hunan Province, China," Sustainability, MDPI, vol. 15(4), pages 1-14, February.
    11. Göran Kauermann & Tatyana Krivobokova & Ludwig Fahrmeir, 2009. "Some asymptotic results on generalized penalized spline smoothing," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 71(2), pages 487-503, April.
    12. Ding, Hui & Zhang, Jian & Zhang, Riquan, 2022. "Nonparametric variable screening for multivariate additive models," Journal of Multivariate Analysis, Elsevier, vol. 192(C).
    13. Alexander März & Nadja Klein & Thomas Kneib & Oliver Musshoff, 2016. "Analysing farmland rental rates using Bayesian geoadditive quantile regression," European Review of Agricultural Economics, Oxford University Press and the European Agricultural and Applied Economics Publications Foundation, vol. 43(4), pages 663-698.
    14. Håland Else Marie & Wiig Astrid Salte & Hvattum Lars Magnus & Stålhane Magnus, 2020. "Evaluating the effectiveness of different network flow motifs in association football," Journal of Quantitative Analysis in Sports, De Gruyter, vol. 16(4), pages 311-323, December.
    15. Patrick Opiyo Owili & Wei-Hung Lien & Miriam Adoyo Muga & Tang-Huang Lin, 2017. "The Associations between Types of Ambient PM 2.5 and Under-Five and Maternal Mortality in Africa," IJERPH, MDPI, vol. 14(4), pages 1-20, March.
    16. Lee, Dae-Jin & Durbán, María, 2008. "Smooth-car mixed models for spatial count data," DES - Working Papers. Statistics and Econometrics. WS ws085820, Universidad Carlos III de Madrid. Departamento de Estadística.
    17. Liangjun Chen & Ya Wang & Zhengwang Wu & Yue Shan & Tengfei Li & Sheng-Che Hung & Lei Xing & Hongtu Zhu & Li Wang & Weili Lin & Gang Li, 2023. "Four-dimensional mapping of dynamic longitudinal brain subcortical development and early learning functions in infants," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    18. Nielsen, J.D. & Dean, C.B., 2008. "Adaptive functional mixed NHPP models for the analysis of recurrent event panel data," Computational Statistics & Data Analysis, Elsevier, vol. 52(7), pages 3670-3685, March.
    19. Ayma Anza, Diego Armando & Durbán, María & Lee, Dae-Jin & Van de Kassteele, Jan, 2016. "Modelling latent trends from spatio-temporally grouped data using composite link mixed models," DES - Working Papers. Statistics and Econometrics. WS 23448, Universidad Carlos III de Madrid. Departamento de Estadística.
    20. Adhya Sumanta & Banerjee, Tathagata & Chattopadhyay, G., 2007. "Inference on Categorical Survey Response: A Predictive Approach," IIMA Working Papers WP2007-05-07, Indian Institute of Management Ahmedabad, Research and Publication Department.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:biomet:v:62:y:2006:i:1:p:159-167. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0006-341X .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.