IDEAS home Printed from https://ideas.repec.org/a/bla/biomet/v66y2010i1p287-293.html
   My bibliography  Save this article

Association Models for Clustered Data with Binary and Continuous Responses

Author

Listed:
  • Lanjia Lin
  • Dipankar Bandyopadhyay
  • Stuart R. Lipsitz
  • Debajyoti Sinha

Abstract

No abstract is available for this item.

Suggested Citation

  • Lanjia Lin & Dipankar Bandyopadhyay & Stuart R. Lipsitz & Debajyoti Sinha, 2010. "Association Models for Clustered Data with Binary and Continuous Responses," Biometrics, The International Biometric Society, vol. 66(1), pages 287-293, March.
  • Handle: RePEc:bla:biomet:v:66:y:2010:i:1:p:287-293
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1111/j.1541-0420.2008.01232.x
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zengri Wang, 2003. "Matching conditional and marginal shapes in binary random intercept models using a bridge distribution function," Biometrika, Biometrika Trust, vol. 90(4), pages 765-775, December.
    2. David B. Dunson & Zhen Chen & Jean Harry, 2003. "A Bayesian Approach for Joint Modeling of Cluster Size and Subunit-Specific Outcomes," Biometrics, The International Biometric Society, vol. 59(3), pages 521-530, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kang, Xiaoning & Kang, Lulu & Chen, Wei & Deng, Xinwei, 2022. "A generative approach to modeling data with quantitative and qualitative responses," Journal of Multivariate Analysis, Elsevier, vol. 190(C).
    2. John F. Fox & Karen A. Hogan & Allen Davis, 2017. "Dose‐Response Modeling with Summary Data from Developmental Toxicity Studies," Risk Analysis, John Wiley & Sons, vol. 37(5), pages 905-917, May.
    3. A. A. Mitani & E. K. Kaye & K. P. Nelson, 2021. "Marginal analysis of multiple outcomes with informative cluster size," Biometrics, The International Biometric Society, vol. 77(1), pages 271-282, March.
    4. Brown, Sarah & Ghosh, Pulak & Su, Li & Taylor, Karl, 2015. "Modelling household finances: A Bayesian approach to a multivariate two-part model," Journal of Empirical Finance, Elsevier, vol. 33(C), pages 190-207.
    5. Laura Boehm & Brian J. Reich & Dipankar Bandyopadhyay, 2013. "Bridging Conditional and Marginal Inference for Spatially Referenced Binary Data," Biometrics, The International Biometric Society, vol. 69(2), pages 545-554, June.
    6. Bruce J. Swihart & Brian S. Caffo & Ciprian M. Crainiceanu, 2014. "A Unifying Framework for Marginalised Random-Intercept Models of Correlated Binary Outcomes," International Statistical Review, International Statistical Institute, vol. 82(2), pages 275-295, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shaun R. Seaman & Menelaos Pavlou & Andrew J. Copas, 2014. "Methods for observed-cluster inference when cluster size is informative: A review and clarifications," Biometrics, The International Biometric Society, vol. 70(2), pages 449-456, June.
    2. Jaakko Nevalainen & Somnath Datta & Hannu Oja, 2014. "Inference on the marginal distribution of clustered data with informative cluster size," Statistical Papers, Springer, vol. 55(1), pages 71-92, February.
    3. Jason Roy & Michael J. Daniels, 2008. "A General Class of Pattern Mixture Models for Nonignorable Dropout with Many Possible Dropout Times," Biometrics, The International Biometric Society, vol. 64(2), pages 538-545, June.
    4. Shun Yu & Xianzheng Huang, 2019. "Link misspecification in generalized linear mixed models with a random intercept for binary responses," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 28(3), pages 827-843, September.
    5. Jonathan S. Schildcrout & Patrick J. Heagerty, 2007. "Marginalized Models for Moderate to Long Series of Longitudinal Binary Response Data," Biometrics, The International Biometric Society, vol. 63(2), pages 322-331, June.
    6. Michael R. Elliott & Marshall M. Joffe & Zhen Chen, 2006. "A Potential Outcomes Approach to Developmental Toxicity Analyses," Biometrics, The International Biometric Society, vol. 62(2), pages 352-360, June.
    7. William Dunsmuir & Jieyi He, 2017. "Marginal Estimation of Parameter Driven Binomial Time Series Models," Journal of Time Series Analysis, Wiley Blackwell, vol. 38(1), pages 120-144, January.
    8. Brajendra C. Sutradhar, 2022. "Fixed versus Mixed Effects Based Marginal Models for Clustered Correlated Binary Data: an Overview on Advances and Challenges," Sankhya B: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 84(1), pages 259-302, May.
    9. Caffo, Brian & An, Ming-Wen & Rohde, Charles, 2007. "Flexible random intercept models for binary outcomes using mixtures of normals," Computational Statistics & Data Analysis, Elsevier, vol. 51(11), pages 5220-5235, July.
    10. Iddi, Samuel & Molenberghs, Geert, 2012. "A combined overdispersed and marginalized multilevel model," Computational Statistics & Data Analysis, Elsevier, vol. 56(6), pages 1944-1951.
    11. Chun Yin Lee & Kin Yau Wong & Kwok Fai Lam & Dipankar Bandyopadhyay, 2023. "A semiparametric joint model for cluster size and subunit‐specific interval‐censored outcomes," Biometrics, The International Biometric Society, vol. 79(3), pages 2010-2022, September.
    12. Iraj Kazemi & Fatemeh Hassanzadeh, 2021. "Marginalized random-effects models for clustered binomial data through innovative link functions," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 105(2), pages 197-228, June.
    13. Bruce J. Swihart & Brian S. Caffo & Ciprian M. Crainiceanu, 2014. "A Unifying Framework for Marginalised Random-Intercept Models of Correlated Binary Outcomes," International Statistical Review, International Statistical Institute, vol. 82(2), pages 275-295, August.
    14. Stephens Alisa & Tchetgen Tchetgen Eric & De Gruttola Victor, 2014. "Locally Efficient Estimation of Marginal Treatment Effects When Outcomes Are Correlated: Is the Prize Worth the Chase?," The International Journal of Biostatistics, De Gruyter, vol. 10(1), pages 59-75, May.
    15. Victor De Oliveira, 2017. "Geostatistical Binary Data: Models, Properties And Connections," Working Papers 0151mss, College of Business, University of Texas at San Antonio.
    16. Kassandra Fronczyk & Athanasios Kottas, 2017. "Risk Assessment for Toxicity Experiments with Discrete and Continuous Outcomes: A Bayesian Nonparametric Approach," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 22(4), pages 585-601, December.
    17. Xiaoyun Li & Dipankar Bandyopadhyay & Stuart Lipsitz & Debajyoti Sinha, 2011. "Likelihood Methods for Binary Responses of Present Components in a Cluster," Biometrics, The International Biometric Society, vol. 67(2), pages 629-635, June.
    18. Laura Boehm & Brian J. Reich & Dipankar Bandyopadhyay, 2013. "Bridging Conditional and Marginal Inference for Spatially Referenced Binary Data," Biometrics, The International Biometric Society, vol. 69(2), pages 545-554, June.
    19. Ling Chen & Yanqin Feng & Jianguo Sun, 2017. "Regression analysis of clustered failure time data with informative cluster size under the additive transformation models," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 23(4), pages 651-670, October.
    20. Huang, Youjun & Pan, Jianxin, 2021. "Joint generalized estimating equations for longitudinal binary data," Computational Statistics & Data Analysis, Elsevier, vol. 155(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:biomet:v:66:y:2010:i:1:p:287-293. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0006-341X .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.