IDEAS home Printed from https://ideas.repec.org/a/bla/biomet/v60y2004i3p598-607.html
   My bibliography  Save this article

An Extended General Location Model for Causal Inferences from Data Subject to Noncompliance and Missing Values

Author

Listed:
  • Yahong Peng
  • Roderick J. A. Little
  • Trivellore E. Raghunathan

Abstract

No abstract is available for this item.

Suggested Citation

  • Yahong Peng & Roderick J. A. Little & Trivellore E. Raghunathan, 2004. "An Extended General Location Model for Causal Inferences from Data Subject to Noncompliance and Missing Values," Biometrics, The International Biometric Society, vol. 60(3), pages 598-607, September.
  • Handle: RePEc:bla:biomet:v:60:y:2004:i:3:p:598-607
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1111/j.0006-341X.2004.00208.x
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Constantine E. Frangakis & Donald B. Rubin, 2002. "Principal Stratification in Causal Inference," Biometrics, The International Biometric Society, vol. 58(1), pages 21-29, March.
    2. Howard S. Bloom, 1984. "Accounting for No-Shows in Experimental Evaluation Designs," Evaluation Review, , vol. 8(2), pages 225-246, April.
    3. Heckman, J.J. & Hotz, V.J., 1988. "Choosing Among Alternative Nonexperimental Methods For Estimating The Impact Of Social Programs: The Case Of Manpower Training," University of Chicago - Economics Research Center 88-12, Chicago - Economics Research Center.
    4. Guido W. Imbens & Donald B. Rubin, 1997. "Estimating Outcome Distributions for Compliers in Instrumental Variables Models," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 64(4), pages 555-574.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. van Hasselt, Martijn & Ferland, Timothy & Bray, Jeremy & Aldridge, Arnie, 2017. "Bayesian Estimation of the Complier Average Casual Effect," UNCG Economics Working Papers 17-14, University of North Carolina at Greensboro, Department of Economics.
    2. Julia Y. Lin & Thomas R. Ten Have & Michael R. Elliott, 2009. "Nested Markov Compliance Class Model in the Presence of Time-Varying Noncompliance," Biometrics, The International Biometric Society, vol. 65(2), pages 505-513, June.
    3. Roderick J. Little & Qi Long & Xihong Lin, 2009. "A Comparison of Methods for Estimating the Causal Effect of a Treatment in Randomized Clinical Trials Subject to Noncompliance," Biometrics, The International Biometric Society, vol. 65(2), pages 640-649, June.
    4. Markus Frölich & Martin Huber, 2014. "Treatment Evaluation With Multiple Outcome Periods Under Endogeneity and Attrition," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 109(508), pages 1697-1711, December.
    5. Qi Long & Roderick J. A. Little & Xihong Lin, 2010. "Estimating causal effects in trials involving multitreatment arms subject to non‐compliance: a Bayesian framework," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 59(3), pages 513-531, May.
    6. Leila Amiri & Mojtaba Khazaei & Mojtaba Ganjali, 2017. "General location model with factor analyzer covariance matrix structure and its applications," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 11(3), pages 593-609, September.
    7. Michael E. Sobel & Bengt Muthén, 2012. "Compliance Mixture Modelling with a Zero-Effect Complier Class and Missing Data," Biometrics, The International Biometric Society, vol. 68(4), pages 1037-1045, December.
    8. L. Altstein & G. Li, 2013. "Latent Subgroup Analysis of a Randomized Clinical Trial through a Semiparametric Accelerated Failure Time Mixture Model," Biometrics, The International Biometric Society, vol. 69(1), pages 52-61, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Guido W. Imbens & Jeffrey M. Wooldridge, 2009. "Recent Developments in the Econometrics of Program Evaluation," Journal of Economic Literature, American Economic Association, vol. 47(1), pages 5-86, March.
    2. Michael E. Sobel & Bengt Muthén, 2012. "Compliance Mixture Modelling with a Zero-Effect Complier Class and Missing Data," Biometrics, The International Biometric Society, vol. 68(4), pages 1037-1045, December.
    3. Stuart G. Baker, 2011. "Estimation and Inference for the Causal Effect of Receiving Treatment on a Multinomial Outcome: An Alternative Approach," Biometrics, The International Biometric Society, vol. 67(1), pages 319-323, March.
    4. Jeffrey Smith, 2000. "A Critical Survey of Empirical Methods for Evaluating Active Labor Market Policies," Swiss Journal of Economics and Statistics (SJES), Swiss Society of Economics and Statistics (SSES), vol. 136(III), pages 247-268, September.
    5. Huber Martin & Wüthrich Kaspar, 2019. "Local Average and Quantile Treatment Effects Under Endogeneity: A Review," Journal of Econometric Methods, De Gruyter, vol. 8(1), pages 1-27, January.
    6. Denis Conniffe & Vanessa Gash & Philip J. O'Connell, 2000. "Evaluating State Programmes - “Natural Experiments” and Propensity Scores," The Economic and Social Review, Economic and Social Studies, vol. 31(4), pages 283-308.
    7. Steven Lehrer & Weili Ding, 2004. "Estimating Dynamic Treatment Effects from Project STAR," Econometric Society 2004 North American Summer Meetings 252, Econometric Society.
    8. Sianesi, Barbara, 2017. "Evidence of randomisation bias in a large-scale social experiment: The case of ERA," Journal of Econometrics, Elsevier, vol. 198(1), pages 41-64.
    9. Sergio Firpo, 2007. "Efficient Semiparametric Estimation of Quantile Treatment Effects," Econometrica, Econometric Society, vol. 75(1), pages 259-276, January.
    10. Lisa Sanbonmatsu & Jeffrey R. Kling & Greg J. Duncan & Jeanne Brooks-Gunn, 2006. "Neighborhoods and Academic Achievement: Results from the Moving to Opportunity Experiment," Journal of Human Resources, University of Wisconsin Press, vol. 41(4).
    11. Kédagni, Désiré, 2023. "Identifying treatment effects in the presence of confounded types," Journal of Econometrics, Elsevier, vol. 234(2), pages 479-511.
    12. Fabrizia Mealli & Barbara Pacini & Elena Stanghellini, 2016. "Identification of Principal Causal Effects Using Additional Outcomes in Concentration Graphs," Journal of Educational and Behavioral Statistics, , vol. 41(5), pages 463-480, October.
    13. Martin Huber & Giovanni Mellace, 2014. "Testing exclusion restrictions and additive separability in sample selection models," Empirical Economics, Springer, vol. 47(1), pages 75-92, August.
    14. Jeffrey R. Kling & Jeffrey B. Liebman & Lawrence F. Katz & Lisa Sanbonmatsu, 2004. "Moving to Opportunity and Tranquility: Neighborhood Effects on Adult Economic Self-Sufficiency and Health From a Randomized Housing Voucher Experiment," Working Papers 5, Princeton University, Department of Economics, Industrial Relations Section..
    15. Smith, Jeffrey, 2000. "Evaluation aktiver Arbeitsmarktpolitik : Erfahrungen aus Nordamerika (Evaluating Avtive Labor Market Policies : Lessons from North America)," Mitteilungen aus der Arbeitsmarkt- und Berufsforschung, Institut für Arbeitsmarkt- und Berufsforschung (IAB), Nürnberg [Institute for Employment Research, Nuremberg, Germany], vol. 33(3), pages 345-356.
    16. Qi Long & Roderick J. A. Little & Xihong Lin, 2010. "Estimating causal effects in trials involving multitreatment arms subject to non‐compliance: a Bayesian framework," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 59(3), pages 513-531, May.
    17. repec:pri:cheawb:kling_mto481 is not listed on IDEAS
    18. Black, Dan A. & Joo, Joonhwi & LaLonde, Robert & Smith, Jeffrey A. & Taylor, Evan J., 2022. "Simple Tests for Selection: Learning More from Instrumental Variables," Labour Economics, Elsevier, vol. 79(C).
    19. Eduardo Fé, 2021. "Pension eligibility rules and the local causal effect of retirement on cognitive functioning," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 184(3), pages 812-841, July.
    20. Patrick Kline & Christopher R. Walters, 2016. "Evaluating Public Programs with Close Substitutes: The Case of HeadStart," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 131(4), pages 1795-1848.
    21. Yongyun Shin, 2012. "Do Black Children Benefit More From Small Classes? Multivariate Instrumental Variable Estimators With Ignorable Missing Data," Journal of Educational and Behavioral Statistics, , vol. 37(4), pages 543-574, August.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:biomet:v:60:y:2004:i:3:p:598-607. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0006-341X .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.